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Abstract

In this report, we present the DREAM 2 Socialbot design and share scientific
and technology contributions made towards developing a fluent and meaningful
socialbot for Alexa Prize 4. Building on top of the last year’s solution we added a
rich plethora of the script-driven skills created with the help of the novel Dialogue
Flow Framework. To lay down the foundation for the discourse-driven dialogue
strategy management we introduced tag-based Response Selector and Speech
Functions Classifier. We also began working on User and Bot Persona Knowledge
Graphs as well as incorporated our work on World Knowledge Graph alongside
with Entity Linking. The final version of DREAM 2 Socialbot is still a hybrid
system that combines rule-based, deep learning, and knowledge based driven
components, but it moves closer to a goal-aware system that can recognize users’
and own goals and drive the dialogue strategically.

1 Introduction

In recent years, the field of conversational AI experienced rapid progress driven by the application
of deep neural networks. On the one hand, transfer learning with pre-trained masked language
models significantly improved natural language understanding [6, 28, 43] and made much better
intent and entity recognition possible. On the other hand, the success of the end-to-end generative
models in the machine translation had not been replicated yet for the open domain dialogue, despite
considerable efforts to increase the size of the models and datasets [45, 33, 36, 2]. As a result, the
state-of-the-art open-domain conversational systems such as XiaoIce [46] or Alexa Prize socialbots
combine machine learning models for user input understanding with the hand-written script and
template-based response generators [11].

Current open-domain conversational agents proved to be quite successful in the user engagement over
the pre-scripted segments of the dialogue [11]. When a user allows such a system to drive dialogue,
it creates a smooth flow by suggesting available relevant topical components and presenting them.
This dialogue is like browsing over the prerecorded videos being translated on the TV channels or
YouTube. In this case, the primary factor that contributes to user satisfaction is the quality of the
precooked content. Conversely, when the user proactively interacts with the system, it usually fails to
meet expectations. These failures are generally due to (1) insufficient information about the user;
(2) lack of commonsense and dialogue state understanding; (3) absence of scripts for the requested
domain.
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In DREAM 2 – the next version of our original socialbot [23], we try to address the following
challenges: user’s preferences modeling, goal-aware dialogue management, and domain scaling. Our
goal is to go beyond mere infotainment towards an engaging and thoughtful conversational partner.

2 DREAM 2 Socialbot System Design and Architecture

DREAM 2 socialbot is implemented and served with DeepPavlov Library1 and DeepPavlov Agent2.

DeepPavlov Library [3] includes a number of predefined pipelines for the most common NLP tasks.
Any pipeline can be easily run in the REST API mode, making it a good choice for micro-service
architecture.

DeepPavlov Agent is a framework for building production-ready multi-skill virtual assistants, complex
dialogue systems, and chatbots. Key features of DeepPavlov Agent include (1) scalability and
reliability in the high load environment due to micro-service architecture; (2) ease of adding and
orchestrating conversational skills; (3) shared dialogue state memory and NLP annotations accessible
to all skills. DeepPavlov Agent orchestrates the following types of services:

• Annotator is a service for NLP preprocessing of an utterance. It can implement some basic
text processing like spelling correction, named entity recognition, etc.;

• Skill is a service producing a conversational response candidate for a current dialogue
state;

• Skill Selector is a service that selects a subset of the available skills for producing
candidate responses;

• Response Selector is a service that picks the best response out of the available candidates
to be sent to the user;

• Postprocessor is a service that is responsible for the postprocessing of the response
utterance. It can make some basic things like adding a user name, inserting emojis, etc.

• Dialogue State stores current dialogues between users and a conversational agent as well
as annotations and other meta-data serialized in JSON format. The state supports sharing of
stored information across the services.

DREAM processes user input in three main steps: (1) input annotation and context retrieval, (2)
response generation, and (3) response selection (see Figure 1). First, multiple Annotators preprocess
the user input serving a natural language understanding task. Also, annotators retrieve contextual
information from external sources such as Wikipedia or news. Then, Skill Selector runs a subset
of Skills based on the extracted information. Finally, Response Selector picks a response to be
sent to Response Annotators and, eventually, to the user. All elements of the pipeline are running
asynchronously with two points of synchronization: Skill Selector and Response Selector.
Communication between different services goes through a shared memory stored in Dialogue
State.

The architecture of DREAM socialbot and a list of all used components can be found in Figure 1.
Most of the services are described in [23]. Detailed description of new and changed components of
DREAM 2 can be found in Section D of the Appendix.

2.1 Dialogue Management

Dialogue management in the module-based DREAM architecture is driven by two main components:
Skill Selector choosing the set of skills that generate response candidates for the current context,
and Response Selector choosing the final reply which is given to the user. Skill Selector of
the DREAM socialbot is described in detail in the previous year’s DREAM Technical Report [23],
and this year it has been modified to support the handling of the sensitive mode cases. Now, this
mode is only used when users ask personal questions on restricted topics. This mode is not, however,
involved for processing user utterances with obscene language.

1https://deeppavlov.ai
2https://github.com/deepmipt/dp-agent
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Figure 1: DREAM socialbot architecture. Multiple Annotators are used to extract information from the user
input. Skill Selector defines a subset of active Skills based on the extracted information. Selected Skills
propose their response candidates. Finally, Response Selector picks a response to be sent to Response
Annotators and, eventually, to the user. All elements of the pipeline are running asynchronously with two
points of synchronization: Skill Selector and Response Selector. Dialogue State serves as a shared
memory.

Generally, all skills chosen by the Skill Selector propose response candidates. Then it is the task
for the Response Selector to choose the responses that are most suitable to the current dialogue
context. Taking into the account success of the script-based approach [10] and our focus on goal-
aware dialogue management, we built a number of script-based skills on popular topics to provide
users with the tightly-controlled conversational user experience. Some of these skills were described
in [23], while updated and new skills are presented in Appendix D. One of the skills – Wiki skill
is able to conduct the dialogue on the wide list of the popular topics that are not covered by specific
scripted skills. Response Selector is also responsible for ensuring a smooth transition to the next
topic by utilizing a number of different linking techniques.

Although some of the scripts can be connected by specific questions which smoothly move user
from one topic to another one (for example, at the end of the discussion of animals, the socialbot
may proceed with the question about animal movies user likes), it is important to provide some
smoothness and coherence in the dialogue for all possible transitions between topics. DREAM 1[23]
presented linking questions approach which was further developed for the current competition. For
every topic covered by the appropriate script-based skill, there was created a curated list of questions
designed to direct the dialogue towards the aforementioned skill, so called linking questions. There is
a special component providing a linking question to the topic predicted by Topic Recommendation
annotator (details in Section 3.7) on every turn. However, abusing this linking question technique can
give a negative impression of uncontrolled switching between topics. Thus, for almost all supported
pairs of topics we have a variety of citations, interesting facts, or thoughts that are related to both
topics simultaneously. In case there is no accompanying connecting phrase that connects both current
and new topic, we offer standalone introductions to that topic instead.

2.1.1 Response Candidate Annotations

The modular architecture of DREAM socialbot implies the combination of many different skills,
including template-based, retrieval, and generative skills. The key ability of the socialbot to deeply
discuss the most popular topics is reflected in the prioritization of components that can conduct
a specific dialogue about those topics. However, response confidences alone can not justify their
selection. Therefore, we propose two more tags for each response candidate: (1) continuation flag,
(2) response parts. Both tags are assigned by the skill proposing it, so there could be response
candidates with the same tags or tags with none of the response candidates assigned to it.
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Continuation flag is intended to reflect the ability of the skill to continue the conversation on the next
turn after the proposed response candidate, and it can have one of four different values:

• must continue – the current response candidate is perfectly suited to the context and
should be returned to the user;

• can continue script – the current response candidate is a part of the script in progress,
but there are no exact matches fitting the context, the response candidate should be returned
to the user if no other response candidates with the exact match to the context exist (must
continue);

• can continue prompt – the current response candidate is a prompt to start the
conversation about a specific topic, and the skill itself is able to continue the dialogue
over the next steps if the user keeps the conversation going;

• can not continue – the current response candidate is from the non-scripted skill or is the
final response node in the script.

Continuation flag is conceived to prioritize skills with scripted conversations. There is no guaranteed
method to provide an entirely coherent dialogue, although scripted skills could give an impression of
coherency for at least a few turns. All linking questions are assigned to can continue prompt tag,
and all skills except the script-based ones are annotated as can not continue. As for the scripted
skills, we use the following rules to set the continuation flag:

• script beginning:
– if user requests dialogue on a specific topic,

* and trigger patterns or entities of specific types are extracted, then set must
continue;

* and a specific topic was detected, then set can continue prompt;
– else if user was asked linking question leading to this skill,

* and trigger patterns or entities of specific types are extracted from the user utterance,
or expected yes/no intent detected, then set must continue;

* otherwise, set can continue prompt;
– otherwise,

* if user mentions trigger patterns or entities of specific types, set can continue
prompt;

* otherwise, if specific topics were detected by an annotator, set can continue
prompt;

• if in the middle of the script:
– and expected patterns are in the user utterance, then set must continue;
– and user was asked yes/no question, and yes/no intents detected, then set must
continue;

– and expected and found trigger patterns and entity types, then set must continue;
– and for all other cases, set can continue script;

• end of the script:
– if previous independent part of the script was finished, and the current line asks a

question which can involve user into conversation with this skill again (for example,
discussion of one specific movie is finished, and the skill asks one more question about
movies), then set can continue prompt;

– otherwise, set can not continue;

Response parts for each response candidate is a list indicating which response parts are present in
the response candidate. This tag is needed to enact Response Selector’s understanding whether
a response candidate already contains a phrase for further development of the dialogue, or that the
candidate acknowledges what user have just said. This information is important for joining several
response candidates to provide smoothness and coherence. Available response parts are:

• acknowledgement – statement intended to confirm socialbot’s understanding of the user
utterance;
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• body – main part of the response intended to support a current conversation topic;
• prompt – statement or question which is designed to start a conversation on a new or

user-requested topic.

Special template-based skill generates acknowledgement for some dialogue acts, other response
candidates are considered as body, while linking questions are assigned to the prompt. We have a
set of the hand-written heuristics to determine whether to combine prompt and acknowledgement
with the best response candidate labeled as body.

2.1.2 Response Selection

The DREAM socialbot’ Response Selector employs the following logic:

1. filters inappropriate response candidates;
2. penalizes response candidates for repetitions;
3. computes the final single-value score for each response candidate. The value is computed

by the empirical formula combining confidences and CoBot Conversation Evaluation model
predictions;

4. applies hand-written heuristics to prioritize special cases;
5. selects the final response candidate as one with the highest score.

The most important problem in this scheme is its heavy reliance on the confidences provided by the
skills of different origin. For example, AIML skills have the same confidences for all responses, while
rule-based skills have confidences manually assigned by developers for different cases, and finally
retrieval skills return similarity scores as confidences. Another common problem faced by the system
is latency and consequent timeouts of the remote services that lead to failures in the conversation
evaluation process.

We figured out that last year’s approach to response selection was mainly reactive and mostly relied on
confidences, dialogue act classification, and intent classification of the last user’s utterance. Thus, the
system lacks a high-level understanding of the user’s goals in the dialogue and fails to establish a solid
common ground. Starting with the assumption that the user has some high-level goals in a dialogue,
we developed and implemented basic goal-aware dialogue management in DREAM 2 as well as
established a foundation for more advanced goal-aware dialogue management in the future versions.
As trainable ranking models can not guarantee system’s adherence to the user goals, we decided to
use tag-based Response Selector. Generally, all response candidates based on the annotations
and tags assigned by skills are divided into priority groups, and the final response candidate is chosen
within the group with the highest priority as one with the highest score from the trainable ranking
model. The single value score originally was computed using the empirical formula from Alexa Prize
Challenge 3 but later replaced by trainable hypotheses (response candidates) ranking model described
in Section 3.8.

All response candidates are also annotated with entities, topics, dialogue acts, intents. Response
Selector has the following priorities:

1. if special user intents detected (for example, request to use an inaccessible Alexa
command), choose the special component providing responses to those requests;

2. if user wants to switch topic to anything else or wants to stop discussing a given topic or
wants the socialbot to switch to a new topic, give priority to linking questions (prompts) if
available, otherwise to all available prompts;

3. if user wants to talk about some particular topic, give priority to prompts which include
entities intersecting with requested by a user or which have must continue flag, otherwise
to all available prompts;

4. if user’s dialogue act requires specific action from the socialbot, give priority to response
candidates containing at least one of the requested dialogue acts if available, otherwise to
the next item;

5. otherwise give priority to response candidates in the following order:
(a) with must continue flag;
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(b) with can continue script or can continue prompt flags, and entities
mentioned by a user;

(c) with can not continue flag, and entities mentioned by a user;
(d) with can continue script or can continue prompt flags, and entities not

mentioned by a user;
(e) with can not continue, and entities not mentioned by a user.

To summarize, we give priority to scripted skills, while still having an opportunity to interrupt the
script if the user requests something else. In the absence of response candidates provided by the
scripted skills, we choose the final response using trainable Hypotheses Scorer (see Section 3.8),
and push conversation to scripts by attaching linking questions according to the hand-written rules.

3 Selected Science and Technology Contributions

3.1 Dialogue Flow Framework

The Dialogue Flow Framework (DFF) is a dialogue systems development environment that
supports both rapid prototyping and long-term team development workflows for dialogue systems.
This framework is based on Emora STDM (E-STDM) [10]. A simple structure allows easily building
and visualizing a dialogue graph, see Figure 7 in Appendix E.

DFF was designed during the process of E-STDM adaptation to DREAM 2 Socialbot architecture.
E-STDM has a large set of modules that can be used out of the box, but these modules are not optional
and are always loaded with the program which increases the resources consumption of the service.
Using pre-built modules can be inconvenient when we need to include all of the related modules. For
these cases, E-STDM suggests writing your own modules, but writing one such module may seem
redundant, and if there are many such modules, then it becomes not easy to work with them.

Given all these disadvantages we decided to built our own framework DFF on the top of E-STDM.
Development with the framework is organized in such a way that writing a dialogue script in python
is as simple, fast, and flexible as possible, and the framework also consumes an order of magnitude
less memory than E-STDM. A special extension was made for the framework, which accelerated the
writing of the script in cases where the standard set of functions is sufficient.

Recently, a variety of frameworks for the development of dialogue flows have appeared to speed up
the process of creating a dialogue system. They often allow developers to customize natural language
understanding (NLU) modules and control dialogues using state machines. Other frameworks require
more expertise but give a more fine-grained control by following the formulation of the dialogue
control information state [38, 18, 22]. This information state-based design provides support for
complex interactions but sacrifices the intuitiveness and speed of development [24].

Table 1 shows a comparison of existing frameworks. DFF is the most similar to E-STDM because
it is derived from it. DFF has many similarities to PyOpen-Dial and botml, which support pattern
matching for NLU and tight integration of external function calls. Likewise, DFF and E-STDM
explicitly support both state machine and information state paradigms for dialogue management and
also provide the ability to extend it easily by adding your own custom NLU that easily integrates
pattern matching and custom modules.

DFF exists in the paradigm of creating a dialogue graph. Each graph has a set of states and edges
also known as transitions connecting these states. Each individual user interaction with the bot is
accompanied by a transition from state to state. Transitions can be global from a specific node to
another specific node. Transitions can also be global transitions from any node to a specific node.
For the transition to be triggered, the transition condition must be fulfilled. Since there can be many
transitions from one node, the sequence of checking the transition condition is determined by the
transition importance parameter.

When transitioning from one state to another, the function that is attached to this transition is executed
and returns a text response to the user. Thus, during one transition, two functions are executed:
one determines the condition of this transition, while another one determines the response returned
to the user. These functions have access to the shared memory of the entire DREAM 2 Socialbot
system, and the function returning the response can also modify the shared memory of the DREAM 2
Socialbot system.
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If a graph of a dialogue flow becomes very large, then it’s support becomes complex. To mitigate
this issue, DFF allows one to create several graphs and combine them together by setting transitions
between them.

Framework License SM IS PM IC EF ON ET CM EI
DFF Apache 2.0 × × × × × × ×

Emora STDM Apache 2.0 × × × × × × × ×
AIML GNU 3.0 ×

RiveScript MIT × × ×
ChatScript MIT × × × ×

botml MIT × × ×
OpenDial MIT × × ×

PyDial Apache 2.0 × × × ×
VOnDA CC BY-NC 4.0 × × × ×
Botpress Commercial × × × ×
RASA Apache 2.0 × × × ×

DialogFlow Commercial × × ×
Table 1: Comparison of features supported by various dialogue system development frameworks. SM:
state machine, IS: information state, PM: pattern matching for natural language, IC: developer-trained
intent classification, EF: external function calls, ON: ontology, ET: error tracking, CM: combination
of the independent dialogue systems, EI: ease of integration into other Python-based systems.

3.2 Knowledge Graphs and Text Databases

Many skills in DREAM 2 require factual knowledge to generate grounded responses. Knowledge
Graph (KG) is a graph where vertices represent entities while edges represent relations between
entities. Triplets (subject, relation, object) in KGs represent knowledge about entities that can be then
rewritten to represent textual facts in the template-based manner suitable for the spoken language.

Wikidata KG3 is integrated into the DREAM socialbot:

1. Every entity extracted with CoBot Entities from the user utterance is passed to Entity
Linking annotator to find Wikidata entity identifiers for the entity substring.

2. Entity identifiers are passed from Entity Linking to Wiki Parser annotator. Wiki
Parser finds triplets in Wikidata KG for each entity.

We use inverted index over unigrams (a dictionary where a key is a word and a value is a list of
entities which contain that word in their titles) for the extraction of candidate entities. Candidate
entities are ranked by:

• Levenshtein [25] distance between the candidate entity title as well as aliases and entity
substring extracted from the user input;

• A number of edges leading to the candidate entity in Wikidata KG.

Following [29] and [41] entities are ranked by similarity of the context (i.e. utterance utt) and entity
description d. We feed the sequence of the question tokens utt = {w1, ..., wn}, SEP-token, and
the sequence of the description tokens {wd1, ..., wdm} into the BERT. Output of the CLS-token is
passed to a dense layer for classification into two classes: entity e is either relevant or irrelevant to
the utterance utt. This softmax probability is used for entity ranking.

Wiki Parser retrieves triplets associated with the entity from the Wikidata. If one of the found
triplets contains the relation «instance of» (for example, (soccer, instance of, type of sport)), this
triplet is used to define the entity’s type. An entity type can help to understand which topic the user
wants to talk about. For example, if the user mentioned «heavy metal», the relation «heavy metal,
instance of, music genre» is used to switch to Music Skill.

Other relations are specific for different entity types (for example, for a singer Wiki Parser outputs
triplets which include the songs and albums of the singer, for a book — the author and publication

3https://www.wikidata.org/
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year, etc.). These triplets are used in the topical skills for the template-based utterance generation. For
example, if the user mentions an athlete, Sport Skill generates a response with the template «Oh,
I kind of know him. He is a POSITION and plays in TEAM.», using the triplets with the relations
«position played on team» and «member of sports team».

Fact Retrieval annotator takes entity identifiers from Entity Linking as an input. Wikidata
entities have the corresponding Wikipedia pages. Fact Retrieval annotator extracts content of
Wikipedia pages of the entities from the SQLite database. Page content is parsed to obtain a dictionary
{heading1: [sentence1, sentence2, . . . ], heading2: [. . . ]}, with headings and corresponding content
of the Wikipedia page sections (Appendix C). Scripted skills can use these annotations to share a
fact that is related to a particular property of an entity. For example, to tell the user where bears live,
Animals Skill uses the text from the section with the heading «Distribution and habitat» from
the Wikipedia page about bears. If the entity type is food, Fact Retrieval can also extract the
«Recipes» section of the page from the wikiHow database with the title containing the mentioned
food to return sentences from the page’s introduction.

Although in [23] we reported a less engaging effect for responses with facts, we decided to continue
using facts and knowledge but in a more controlled manner in Alexa Prize Challenge 4. In DREAM
2 Socialbot, we use facts in the following way:

• Fact Retrieval annotator retrieves facts for entities in user utterance from Wikipedia and
wikiHow4.

• Fact Retrieval annotations (along with CoBotQA facts) are used in the scripted skills to
share non-trivial knowledge about the entities user is interested in.

• Fact Retrieval annotations are used in Knowledge Grounding Skill which uses
retrieved fact as knowledge to generate response candidates for the current context.

• Wiki Skill uses a sequence of facts from the Wikipedia pages to discuss the entity
mentioned in the user input.

KBQA (Knowledge-based Question Answering) annotator is intended to answer user factoid questions
utilizing Wikidata KB. KBQA takes entity identifiers extracted from the user utterance with Entity
Linking as an input. Then the system extracts triplets from Wikidata, which contain the entity.
Described below, Relation Ranking component ranks the relations in the candidate triplets with a
BERT-based model. The object which contains the relation with the highest score in the triplet is
used as the answer.

The input to the BERT-based Relation Ranking component is the following: the question tokens,
the [SEP] token, and the candidate relation title. Output representation of BERT [CLS] token is fed
into a dense layer for binary classification into two classes: 1 if the relation is appropriate for the
question (positive sample), or 0 otherwise (negative sample). The model was trained on LC-QUAD2.0
dataset [8] and achieved F1= 87.2.

Text QA service answers the user’s questions using Wikipedia pages. The service takes as input the
paragraphs from Wikipedia extracted with Fact Retrieval and finds the spans of the answer. The
model is based on R-NET [13]. It was trained on SQuAD v1.1 dataset [34] and achieved F1=80.3.

3.2.1 Wiki Skill

Wiki Skill has a list of supported entity types, and if the entity extracted from the user utterance
belongs to one of these types, the skill starts the template-based conversation based on Wikipedia or
wikiHow pages. Wiki Skill parses the extracted page to make a dictionary where keys are headings
in the Wikipedia page, and values are the lists of the paragraphs that belong to the section with the
aforementioned headings. The skill consequently offers the user to learn information generalizing
it using the headings of the page. For example, if the user wants to talk about the smartphones, the
skill produces the response «Would you like to know about the hardware of smartphones?» using
the heading «Hardware». If the user continues this conversation, the skill then outputs a sentence
from the section with the heading «Hardware», and proposes information under the next heading,
e.g., «Are you interested in software of smartphones?».

4https://www.wikihow.com/
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3.2.2 Wiki Extension of Dialogue Flow Framework

Wiki Skill was extended to facilitate the development of the small talk scripts that relied on pages
from the Wikipedia. The Wiki Skill variant of the small talk script contains markup for entity
extraction, slot filling, facts insertion, and for switching to the different branches of the dialogue. The
main functionality of Wiki Skill is:

• extraction of entities and their types using CoBot Entities, Wiki Parser and regular
expressions from the user utterances;

• dialogue branching based on the conditions of the different types: patterns, extracted entities,
types of these entities, dialogue acts;

• filling slots with the extracted entities and Wikidata triplets;
• automatic integration of the facts from Wikipedia and wikiHow into the script;
• acknowledgments towards the user utterance based on checking of different conditions

within the user utterance.

Each small talk script is a list of dictionaries of utterances. An example of single utterance is presented
in Figure 2. The available parameters of the utterance are the following:

• «utt» contains the list of sentences which will be joined to compose the socialbot’s response
(sentence can be skipped if it contains slots but entities for filling the slots were not extracted);

• «subtopic» refers to the script branch that the utterance belongs to;
• «expected_entities» is an optional list of entities which are expected to appear in the next

user utterance (entities can be defined by one of the tags from CoBot Entities, Wikidata
entity type from Wiki Parser or a regular expression). In Figure 2) the extracted entity
from the next user utterance will be saved to the shared memory under the key «user_hobby»;

• «facts» is an optional parameter containing the list of knowledge sources (Wikipedia or
wikiHow page) the socialbot can discuss with the user;

• «cond» defines the condition which is checked to move into the discussion of the knowledge
source ([[«is_yes», «user», True]] defines checking user agreement within dialogue acts).
The conditions can include matching a regular expression pattern in the user utterance, user
dialogue acts, or checking the existence of entities of specific CoBot Entities and Wiki
Parser types within the user utterance. Parameter «cond» is used for switching between
branches in the different parts of the script.

Figure 2: Utterance sample in Wiki Skill small talk implementation in Python. Sentences from «utt» is a
next socialbot response in the dialogue branch «subtopic». If user response to this utterance contains agreement,
the socialbot will share information from «wikihow_page». Parameter «expected_entities» determines that if
user response contains any entity of a given type it will be stored as a variable to be used further in the dialogue
for slot filling.

An example of a conversation with Wiki Skill small talk script is presented in Figure 6 in
Appendix B. Wiki Skill small talk mode is used to promptly implement the topic-specific scripts
to cover popular topics that are not supported by any of the DFF skills. Wiki Skill covers the
following topics (in alphabetical order): anime, art, bitcoins, cars, chill, dinosaurs, family, friends,
Harry Potter, hiking, hobby, love, politics, robots, school, sleep, smartphones, space, TikTok, work.
All small talk scripts contain several turns and utilize knowledge sources if possible.

3.3 Knowledge-Grounded Response Generation

Different methods of knowledge integration presented in Section 3.2 have two main disadvantages.
Firstly, these methods are using direct statements coming from the encyclopedic-like or generic written
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articles, and make socialbot’s speech more robotic. Secondly, Amazon Alexa receives transcribed
human speech which brings speech recognition errors and more importantly, colloquial expression
and phrasing that makes factual questions answering difficult. In theory, both disadvantages could be
resolved by the generative skill based on this knowledge.

Knowledge Grounding is an approach to generate a response containing new information from the
provided knowledge relevant to the context of the conversation. Knowledge-Grounded Response
Generation is implemented in Knowledge Grounding Skill that uses a ParlAI Blender 90M
model [35] fine-tuned on Topical Chat Enriched dataset [16] as its core. The model input consists of
the current user utterance, conversation history, and a paragraph of knowledge.

To find the best length for the grounding knowledge, we fine-tuned ParlAI Blender 90M model on
the data grounded with one sentence and three sentences of knowledge. Scores before and after
fine-tuning for the socialbot setups are presented in Table 2. The number of the fine-tuning epochs is
determined by running fine-tuning until the validation perplexity stopped getting better.

Context length Epochs Before fine-tuning After fine-tuning
PPL Token acc. PPL Token acc.

One knowledge sentence 47.85 18.92 0.41 10.97 0.49
Three knowledge sentences 61.42 19.81 0.41 11.00 0.49

Table 2: Perplexity and token accuracy scores before and after fine-tuning ParlAI Blender 90M model
on Topical Chat Enriched dataset for one knowledge sentence grounding and three knowledge
sentences grounding. Scores provided for validation rare set that contains entities that were
infrequently or never seen in the training set.

Table 8 in Appendix A lists examples of knowledge-grounded conversation with true labels and
responses generated by the fine-tuned ParlAI Blender 90M model for conversational data from the
Topical Chat Enriched test set.

Knowledge Grounding Skill aims to develop a conversation on a given topic grounded on all
available knowledge sources. It uses news descriptions from News Skill to continue news discussion
or as a source of knowledge about recently mentioned entities. The skill utilizes facts from CoBotQA
and Fact Retrieval if available for currently discussed topic or entity. Knowledge Grounding
Skill is also used in a case when a user wants to change the topic. If the user does not specify the
subject of the conversation, the skill generates a prompt based on the hand-crafted facts on one of the
popular conversation topics (games, movies, sports, science, music, food, emotions, relationships,
weather, activities, celebrities, children, travel, art, jokes).

3.4 Goal-Aware Dialogue Management

One of our original tenets, Goal-Aware Dialogue Management, was proposed to enable dialogue
management based on the understanding of the user’s and socialbot’s goals. However, our existing
mostly single-turn dialogue management lacked the functionality to transform these high-level goals
into the turn-specific activities. Understanding of the user’s and socialbot’s goals, in turn, required
laying out the foundation necessary for modeling them and using them in the conversation. During
Amazon Alexa Prize Socialbot Challenge 4, we decided to begin work in all of these directions.

One of the past Alexa Prize teams, Gunrock [27], observed different types of user conversation styles
in their socialbot. Submissive users tended to follow the dialogue flow initiated by the system, whereas
dominant users liked to direct the conversation. They calculated a ratio of utterances classified as
«QUESTION», «COMMAND», «OPINION», and «STATEMENT» dialogue acts to identify user’s
type. In our socialbot, closer to the end of the Semifinals, we added a similar mechanism to detect
user’s type by adding Big5-based [5] Personality Detection module [19]. While there are 5 personality
traits, we picked only introversion/extroversion to aid in detecting extrovert users and enabling them
to lead the conversation with the socialbot providing short reactive responses. The system calculates
the median of the user’s utterance classifications across 5 last turns to classify the user as either an
introvert or an extrovert. Unfortunately, this approach, introduced within the Generic Responses
Skill, alongside with Speech Function Classifier and Speech Function Predictor has
only been tested with the internal users.
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We introduced the concept where entities mentioned by the user or the socialbot are stored together
with the recognized user’s attitude. This attitude can be positive, neutral, or negative.

In one of the skills, Gossip Skill, socialbot’s attitude is randomly generated during the first
interaction with the entity, and is later used to express socialbot’s opinion within the dialogue. The
user’s relation to an entity is extracted based on the sentiment classification of the user utterance that
mentioned the given entity. While our original DREAM 1.0 socialbot from Alexa Prize Challenge 3
used generic Dialogue State to represent all annotations across the system, we expanded the
aforementioned concept into a shared component to more prominently store entities and attitudes to
them within the dialogue.

In another skill, Bot Persona Skill, we initially created a list of 20 most popular things with short
explanations expressing our socialbot’s opinion towards them. Then, to collect the top 20 popular
items appearing in the conversations, we analysed 81408 dialogues where users told about their
favorite things or asked the socialbot about its preferences. As a result, we selected the 20 most
favored objects: breakfast, movie, book, game, color, song, food, animal, TV show, thing, kind of
sport, singer, actor, day, series, book genre, music, number, pet, sports team, anime.

In the next step, we derived higher-level categories primarily based on topics covered by our scripted
skills (movies, TV shows, sports, sports teams, music). For each category, Bot Persona Skill can
explain why it prefers the particular item from the corresponding category. Using the Wiki Parser,
the skill can express its opinion about entities related to the given category.

3.5 Speech Function Classifier and Predictor

One of the past Alexa Prize teams, Slugbot [1], proposed a DRDM dialogue model to control the
coherence of the open-domain dialogue using discourse relations. Their approach introduced a
combination of dialogue acts and four discourse relations from the Penn Discourse TreeBank [32] as
means to model interaction within individual turns and at a higher level. However, PDTB 2.0 is based
on the 1-million-word Wall Street Journal corpus which is a written language and is not best suited
for the casual conversation analysis. Instead, Eggins and Slade in their work [9] introduced a similar
connection between individual turns and cross-turn discourse structure patterns specific for spoken
language as the higher-level abstraction that operates across multiple turns, enabling interactive and
sequential conversational experience. At turn level, they extended Halliday’s concept of Speech
Functions [14, 15] which are an alternative to Dialogue and Speech Acts. At the higher level, they
introduced a concept of Discourse Moves that are directly connected to the Speech Functions.

Speech Functions and Discourse Moves have been originally used by Mattar and Wachsmuth
in 2012 [30] in the virtual museum agent as a mechanism that enables small talk. However, their
speech function classifier’s taxonomy was greatly reduced to support just a small talk within the
mostly goal-oriented dialogue system. We needed a broader taxonomy that would focus first on the
open-domain dialogue.

To aid in the development of the Speech Function Classifier, we picked the Santa Barbara
Corpus of Spoken American English, which consists of 60 transcriptions of the naturally-occurring
spoken conversations. Three face-to-face dialogues were preprocessed and then labeled with the
Speech Functions into a small dataset including about 1700 manually annotated utterances. Two
annotators reached an inter-annotator agreement of κ = 0.71 on 1200 utterances which is considered
to be a good result. Two versions of the Speech Function Classifier were developed. By
limiting taxonomy from 45 to 33 classes, using a hierarchical algorithm based on several Logistic
Regression models with different parameters, and a rule-based approach, the second version achieved
an F1-score varying from 52% to 71% depending on the distribution of the Speech Functions in a
particular dialogue.

The resulting Speech Function Classifier labels each phrase in the user and socialbot utterance
with the Speech Function. This classification enables the socialbot to predict the socialbot’s response
Speech Functions most expected by the user for a given last user’s phrase Speech Function. While
we ran an experiment with the internal users, unfortunately, we did not have time to test this concept
on real users during the Semifinals.
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3.6 Dialogue Acts Driven Skill Generation

Our work on the Goal-aware dialogue management led us to understand that even short small talks
imply setting and achieving different conversational goals, e.g. greeting, requesting an opinion, or
sharing information. While script-based skills use goals incorporated by the developers, we can only
wish that both retrieval and generative skills can aid in conducting a goal-aware dialogue. On the
other hand, script-based skills have a substantial disadvantage, which is a development cost. Being
encouraged by the success of the script-based approach [10] for the Alexa Prize Challenge 3, we
introduce a method for the automatic skill generation. So, the proposed idea is to create a goal-
oriented skill on top of the conversational data. Goal-oriented skills usually utilize custom intents
and entity detection as a natural language understanding module and next action prediction alongside
with the slot-filling as a natural language generation module. Therefore, a dataset annotated with
the dialogue acts as abstract intents and detected entity types can be used for goal-oriented skill
construction.

We decided to use the Topical Chat Dataset [12] which contains short dialogues focused on the
single-topic conversations between real people for the first version. We annotated every utterance in
the dataset with dialogue acts using MIDAS Classifier and mentioned entities alongside with their
types using CoBot Entities annotator. We consider system action as a combination of MIDAS
dialogue act and types of entities extracted from the utterance.

The architecture proposed in [40] was used to involve dialogue acts and entity types into the dialogue
management. RNN model learns to predict the next system action based on the full dialogue history.
Vector representation for each utterance is composed of utterance embedding and one-hot encoding
representation of both the involved entity types and its dialogue act. The response of the skill
is a random utterance from a subset of the system utterances labeled with the predicted system
action. Then an optional slot in the system utterance is filled with the user-mentioned entity of the
same type. This can be further improved by filling system utterances with entities connected to the
user-mentioned ones, for example, using knowledge graphs.

For proof-of-concept experiment, system utterances could contain more than one entity which led to
the huge number of system actions. Therefore, we considered only a subsample of the Topical Chat
consisted of the dialogues related to the Sports discussions. The next action prediction accuracy of
the trained model was 0.9242. Close-reading analysis revealed that system predictions were quite
irrelevant for the user most of the time.

Getting rid of topic-specific restrictions, we utilize only dialogue turns where system utterance
contains no more than one entity to limit number of system actions. While the proposed approach
was not good enough to be integrated into the general DREAM pipeline, there are several promising
directions to improve the system. Possible enhancements are described in Section 6.

3.7 Recommendation Models

Increasing number of the scripted topics leads us to the necessity to control offered topics. For
that, we can utilize not only the dialogue history but also the structured user personality — starting
from the main information, like age group, to the user’s preferences extracted by Entity Storer.
Therefore, in this section we present Topic Recommendation annotator which offers a topic for
further conversation using the information about the discussed topics and user’s preferences. Dummy
Skill generates a linking question to the scripted skill supporting the recommended topic. Then
Response Selector can either choose response candidate as a final response or join linking prompt
to another response candidate. Topic Recommendation annotator aims to recommend topics that
the user is likely to support. It is important that we can proactively suggest the next topic to the user
when the user wants to change the topic but does not specify which one, and when the conversation
with specific scripted skill is coming to the end.

There were several experiments with an applied model for recommendations, including Logistic
Regression, TF-IDF, and ConveRT. Originally, we assumed that topic recommendation implies the
presence of a dialogue dataset marked with the considered topics. As we did not have a good enough
classification model for the topics we covered with scripted skills, we decided to utilized CoBot
Entities annotator, and manually map different entity types to the considered topics.
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3.7.1 Entity Recommendation

The first version of the Entity Recommendation model used Logistic Regression to predict entities
and entities labels which could be mentioned in the conversation. For every utterance in Topical
Chat, CoBot Entities extracted mentioned entities and tagged them by type. The dataset contains
4152 samples with 157776 utterances. We excluded some non-informative entity types («misc»,
«anaphor», «number», «duration», «year», «date»), so the final number of the entity types was 22.
The number of the unique occurred entities was equal to 10061. 200 top frequent entities were chosen
to be predicted.

For the model recommending N objects, feature vector consists of 3 vectors of dimension N . The
first vector contains at the corresponding position of each object the portion of its occurrences in
the utterance history. The second one includes 1 for mentioned in the last utterance objects, and
0 – for others. And the last one includes 1 only for the candidate object. Then these 3 vectors are
concatenated, and the final feature vector with dimension 600 is given to the model as an input. If
the candidate object was mentioned in the dialogue sample, the feature vector is labeled by 1. If the
candidate object is chosen randomly, the feature vector is labeled by 0.

Eventually, 40000 samples were prepared for training and 4214 samples for testing. The results
of label and entity recommendations can be found in Table 3. After an entity or an entity label is
recommended, the predicted value needs to be mapped to a specific scripted skill. Accidentally, we
did not estimated its quality on real users due to integration bugs.

Type Accuracy, % Train Test
Entity 66.6 40000 4214
Label 76.3 95000 10286

Table 3: Accuracy scores of Logistic Regression Model for recommendation models of the next
mentioned entity and entity type. Train and test dataset sizes are shown in corresponding columns.

3.7.2 ConveRT-based Topic Recommendation

The second approach was based on the ConveRT model that is a model for ranking responses for the
given context. The key idea is to replace response ranking with recommendations ranking. Assume a
recommendation is a sentence proposing the next topic for the conversation. Then ConveRT could
be used to choose topic proposal the most suitable to the current dialogue context. The first set of
possible proposals was created as a set of template-based sentences «let’s chat about TOPIC» where
«TOPIC» values generalize topics of particular scripted skills. The second method to create possible
proposals was to use linking questions. Unlike the previous method, in this case every topic had
several corresponding proposals. If the question was ranked in top-k, the corresponding topic was
labeled by 1, and 0 otherwise. One more method to create proposals set was to unite both proposals
sets.

The results of the ConveRT model evaluation are presented in Table 10 in Appendix F. At that
moment, only 9 topic scripted skills were available. These results can be considered sufficient but
could be improved by taking into account the user’s personality. Unfortunately, Topical Chat dataset
contains coincidence topics but does not collect user preferences.

3.7.3 Topic Recommendation based on Reddit Personality

The main idea of the third approach is to build representations of user personalities from Reddit and
then to find the most similar to the current user. So, topic recommendation is produced by the use of
information about similar Reddit users. We collected information about subreddits in which the user
submitted the last 10 posts and left the last 10 comments. 2878 subreddits with 31578 submissions
were received for 665 users. Then these subreddits were classified by 12 topics by keywords and
language model BART [26]. As a result, each user is represented by a vector of dimension 12
where each element of the vector is equal to the portion of occurrences of the corresponding topic
among all user’s posts and comments. The representation of the current user persona is created as
portions of scripted topic-specific skills responses in the dialogue. Similarity scores are obtained with
cosine similarity between vector representation of the current user and all considered Reddit users.

13



The evaluation process was performed in the same way as for the ConveRT model. The results are
presented in Table 11 in Appendix F.

The recommendation model was tested on the real users. The percentage of the user’s agreement to
talk on the recommended topic was counted. The agreement was identified by the positive sentiment
or agreement intent. The final results can be found in Table 4. There is a slightly improved agreement
percentage with recommendation model that should be improved to be more useful for the dialogue
management.

Approach Agreement, % Samples
Without recommendation (random choice) 59.6 334

Topic recommendations with TF-IDF 61.2 778
Table 4: Accuracy scores of user’s consent prediction with and without topic recommendation based
on Reddit users’ personalities.

3.8 Trainable Hypotheses Ranking Model

There are two main approaches for ranking candidate responses. The first method is to obtain
an independent representation of the candidate response and context, and then compare these
representations to determine their relevance [37, 17]. The second approach is to determine relevance
based on the combined representation of both candidate response and context [42, 47, 39]. Our
solution consists of two stages. At the first stage, we extract features from our candidate responses.
For this we use ranking models that assess intermediate relevance, which is added to the rest of the
features received from annotators. At the second stage, the obtained features are used to obtain the
final relevance.

For fine-tuning, we used TopicalChat dataset [12]. For the final task, we have mapped out 30 selected
dialogues with real users. The length of the dialogue is about 30-40 turns. At every step of the
dialogue, 6-12 candidate responses were marked out. Thus, in total, we collected about 10 thousand
triplets consisting of a context, candidate response, and candidate response label.

Table 5 shows the results of the first stage models. The baseline model chooses the candidate response
with the highest confidence value. The ConveRT model [17] trained on the Reddit dataset generates
an independent representation for each utterance, after which the relevance is assessed through the
pre-trained function. Another model is UMS-ResSel model [39], that is based on BERT, but it uses
additional strategies for training process. That strategies extend the loss function of vanilla BERT
by adding special operations (insertion, deletion, search) for improvement order understanding of
utterances of a dialogue.

Model P@1 R@1 R@3 R@5 R@10
Baseline 51.2 50.2 71.6 85.3 99.0
ConveRT 47.9 46.8 74.0 89.0 99.1
ConveRT (finetuned) 52.6 49.9 71.6 88.9 99.6
UMS-ResSel 47.6 47.6 69.7 84.5 99.0
UMS-ResSel (finetuned) 48.2 48.0 69.5 85.3 99.1

Table 5: The results of response selection models without gradient boosting performed on our
dialogue dataset. Baseline – top@ based on internal confidence of a skill. ConveRT – response
selection by Transformer-based model pre-trained on Reddit. UMS-ResSel – response selection by
BERT-like model. Models were fine-tuned on the TopicalChat dataset.

For the second stage, we used additional annotators – Dialogue Breakdown (DB) [31] and
MIDAS [44] classifier. In this stage, models based on the gradient boosting performed the best. Two
implementations of this algorithm were considered: XGBoost [4] and CatBoost [7]. Hyperparameters
were selected by the grid search method. Table 6 shows that the model based on CatBoostClassifier
received the best result in comparison with other gradient boosting algorithms by using the ConveRT
relevance score, the markup with dialogue acts from MIDAS, and the feature from Dialogue
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Breakdown and the XGBRanker model achieved the best result with all annotations and confidence
added.

Model Features P@1 R@1 R@3 R@5 R@10
CatBoostClassifier ConveRT, MIDAS, DB 63.5 57.0 80.9 93.3 99.7
XGBRanker ConveRT, MIDAS, DB, C 65.7 61.3 83.1 94.3 99.8
XGBRanker ConveRT, MIDAS, DB, C, A 68.6 63.1 84.3 94.4 99.8

Table 6: Comparison of second stage models with an extended set of features. Features column
denotes which additional features were utilized, particularly, DB denotes Dialogue breakdown labels,
C – confidence, A – annotations of CoBot Conversation Evaluation.

3.9 Multi-Task Classifier

Multiple annotators and skills of the DREAM social bot use the pre-trained neural models that
consume enormous computational resources. However, the computational cost available to us
is limited. Moreover, the work of Response Selector requires use of CoBot API services for
all candidate response annotations, while the number of queries to API is also limited. These
restrictions led us to the idea of «squeezing» several classification models into one to lower
down the computational costs. These models are CoBot DialogAct, CoBot Topics, Sentiment
Classifier, Emotion Classifier and Toxic Classifier which description is given in [23].

We compressed the functionality of the models into the single BERT-base model. We used samples
from the dialogues with real users from the Alexa Prize 3 which were labelled by all considered
models. Although we researched over different pseudo-labeling approaches [20], in our task the
number of the examples that already had labels from all these models was so high that there was
no need in using this approach. Specifically, the train set contains 468237 samples, the test set –
10597 samples. We used the original raw utterances without history as a sample truncating the phrase
length to 32 tokens. Apart from the unification of all 6 models, we experimented with the unification
of only CoBot models and only non-CoBot models. In all settings, we considered all labels to be
independent from each other.

The results on the test set for the models we received and the original models are presented in Table 7.
We should note that «accurate» labels for CoBot tasks those ones obtained by original CoBot API
services. For other tasks, the train, validation and test sets were the same as in [23]. We also tried
to add history (3 utterances) to the Combined Classifier that yielded increase in accuracy (by
about 9%) and F1-score (by about 10%) for CoBot DialogAct tasks (original API service utilizes
history). However, we did not integrated this model as it required increasing the input size from 32
up to 64 tokens. For the sake of achieving the best balance between latency and accuracy, we chose
the variant of the Combined (6 in 1) model as a final variant to be used in the socialbot.

4 DREAM Socialbot Evaluation Results

After the Alexa Prize Challenge 3, our team continued work on the development of the DREAM
socialbot. We used the final version of the original DREAM socialbot [23] as the starting point. Given
that we no longer had an access to the CoBotQA remote service that was used for factoid question
answering and knowledge retrieval in the original DREAM socialbot, we had to implement our own
solution. For that, we have integrated basic versions of the following knowledge graph components:
open-domain question answering model (ODQA), knowledge base question answering (KBQA), Entity
Linking, factoid questions detection (Factoid Classification), as well as factoid questions
answering skill (Factoid-QA).

We used Docker Swarm for deployment in our original DREAM socialbot. However, given the
growing complexity of the solution we decided to move on to more advanced orchestration system.
We migrated to Kubernetes on AWS EKS to get much needed flexibility. Although we kept other
tracking and analytical components of the last year, transition to Kubernetes turned out to be a
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Model name Source models 6 in 1 CoBot – 3 in 1 Non-CoBot – 3 in 1
Custom

CoBot Topics — 0.84 (0.83) 0.82 (0.84) —

Custom CoBot
DialogAct Topics — 0.76 (0.64) 0.78 (0.66) —

Custom CoBot
DialogAct Intents — 0.69 (0.65) 0.70 (0.67) —

Emotion
Classification 0.92 (0.75) 0.82 (0.60) — 0.85 (0.67)

Sentiment
Classification 0.72 (0.68) 0.60 (0.57) — 0.66 (0.62)

Toxic
Classification 0.92 (0.60) 0.92 (0.59) — 0.93 (0.60)

Table 7: Combined classification: accuracy and F1-score in brackets on the test sets for 6 tasks for
different models. Source models denote separate models, CoBot – 3 in 1 denotes model trained on
CoBot Topics and CoBot DialogAct annotaions, Non-CoBot – 3 in 1 denotes model trained on
emotion, sentiment, and toxic classification tasks.

significant challenge for our small team. Only by the end of January, we managed to get deployment
under control.

In Alexa Prize Challenge 4, we participated in 3 official competition phases: Initial Feedback
(January 18 – March 1), Quarterfinals (March 2 – April 30), and Semifinals (May 4 – June 25) periods.
However, for analysis purposes, we identify shorter periods in the DREAM socialbot development.
In Figure 3 daily, moving average and stage average ratings of DREAM socialbot are presented.

Figure 3: Average daily DREAM Socialbot rating. Daily rating is in blue. Thicker green line is a moving
average of daily ratings for the last 7-days. Vertical dotted lines separate different stages of DREAM socialbot
development. The thickest red line shows average rating during the stage. Shaded area corresponds to different
official phases of the competition. Orange line corresponds to moving average of daily ratings for dialogues of
20 and more utterances.

Initial Feedback period officially started on January 18. By that time, DREAM 2.0 socialbot
changed significantly from DREAM 1.0 socialbot: it not only used our own knowledge graph-driven
components such as KBQA, ODQA, and Wiki Parser, but also got an updated ConveRT Reddit.
Between January 18 and February 1 DREAM 2.0 socialbot was still unstable due to continuing issues
with deployment, and we had to resort to the original DREAM 1.0 socialbot for the half of the entire
user traffic to maintain uninterrupted user experience. On February 1, we put an end to DREAM 1.0
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socialbot. Average rating of DREAM socialbot during the first half of February is similar to the
average DREAM rating during January, so DREAM 2.0 and DREAM 1.0 have similar quality.

By mid-February, our observations showed that the updated ConveRT Reddit provides worse
responses compared to its version from the original DREAM 1.0, and we reverted to the original
version on February 14. At the same time, though, we released our new generative Knowledge
Grounding Skill programmed to be invoked rarely, with low confidences. This helped us to
accurately measure user’s reaction and fine-tune this skill. These changes along with the updates to
the existing components slightly improved our ratings.

During the second half of the February we have enabled Wikidata Dial Skill couple times for
a few days but generated responses were of insufficient quality, so we removed the skill. As we did
not have an access to CoBot Dialogue Acts and Topics after the Alexa Prize Challenge 3, we
used their annotations collected during the last year to build our own versions of the CoBot-based
classifiers. However, as the resulting resource consumption has grown significantly, we integrated
them alongside with the existing classifiers for toxicity, emotion, and sentiment detection into the
Combined Classification described in Section 3.9. However, with the restored access to the
original CoBot classifiers, and with their increased performance, we reverted to the Amazon-provided
CoBot classifiers for the duration of the entire Challenge. This decision made a positive impact on
the average daily ratings.

On February 25, we have released Dialogue Flow Framework and decided to double down on
the content of the socialbot. Travel Skill was first released on February 27, and, after a few days,
we added the first versions of Animal Skill and Food Skill on March 4. By March 10, we have
already had three improved topic-based DFF-skills, and released Sport Skill and Music Skill.
All these gradually improved and refined skills had a positive effect on the average rating. At the same
time, pre-trained original MIDAS [44] model was integrated into DREAM as MIDAS Classifier.
On March 10, we disabled Knowledge Grounding Skill as its responses demonstrated that the
skill still has to be vastly improved. Two days later, we also changed the beginning of the dialogue
from offering users just three most popular topics (movies, books, and games) to an option to choose
between two random topics covered by our skills. These substantial changes helped us to improve
our daily ratings significantly, confirming our assumptions about the importance of scripted content
in the socialbot.

On March 19, Knowledge Grounding Skill was enabled once again, this time enhanced with
the fine-tuned model utilizing knowledge up to 3 sentences. Seeing a decrease in rating, we continued
our work on balancing of the Knowledge Grounding Skill confidences and conditioning for
turning it on or off. On March 25 we released a new greeting script with questions about weekends.
Unfortunately, most of the users did not want to share the details about their weekend time, and
when they did the mentioned activities rarely if ever led to the scripted skills. This made it harder for
the socialbot to continue a coherent and engaging conversation after this scenario which negatively
affected the daily ratings.

Originally, we have extracted conversational subjects using NER for named entities and CoBot Noun
Phrases. On April 1, we transitioned subjects extraction from noun phrases to entities using
the CoBot Entities service provided by Amazon. We also added sentiment-based filtration
of negative news in News Skill and negative predictions of commonsense aspects in both
Activities Discussion Skill and Personal Events Discussion Skill. Simultaneously,
Entity Linking algorithm was significantly improved with the use of context. In the beginning
of April we finally turned off Alice, all topic-based TFIDF-Retrieval Skills, and event-based
skills. Discussion of human activities obtained from user utterance in Activities Discussion
Skill was also disabled. These improvements increased our ratings.

On April 6, we released the first version of the new Response Selector described in details
in Section 2.1.2. It used our empirical formula for ranking responses inside the same priority
group. Knowledge Grounding Skill began generating response candidates based on the CoBotQA
knowledge. We also started to utilize GNews API that improved quality of News Skill. Two days
later we introduced «disliked skills» approach – if user refuses to discuss, shows negative or toxic
reaction to linking question to the scripted skill, this skill is marked as «disliked» and will never
be offered to the user again. Around April 10 we fixed substantial bugs with the scripted skills
activation, facts formatting in Fact Retrieval, and with timeouts across the socialbot’s pipeline.
We also decreased frequency of the universal dialogue act-based responses from Grounding Skill

17



that interrupted the dialogue too often. These fixes had a significant positive impact on the DREAM
daily rating in mid-April.

In mid-April we noticed that some of the other competing socialbots do not interrupt when user
requests something and simply continue following the script. In cases when user dialogue act requires
action from the socialbot (for example, if user requests opinion, socialbot’s dialogue act should
be opinion expression), current version of Response Selector removed priority from the scripts,
choosing a final response among response candidates containing corresponding dialogue acts. Due to
a significant focus on fixes and new features during the competition, we have not had an opportunity
to compare these two strategies, so we just switched between them trying to manually estimate user
reaction several times during the challenge.

MIDAS Classifier provides very useful information about dialogue acts in user and socialbot
utterances, so we also concentrated on its improvement and on April 21 replaced the original model
with the BERT-based classification model trained on the semantic classes subset of the MIDAS
dataset [44]. Classification quality improved which had a positive impact on universal responses by
Grounding Skill, script-based skills and Response Selector in general.

On April 30 Knowledge Grounding Skill started to generate response candidates based on the
news descriptions from News Skill. At the same time, we turned on interrupting scripted skills
if user dialogue act requires a corresponding response dialogue act. One more important feature
released in the end of April is Wiki Skill information-based dialogue about different subjects
and concepts. We also shipped Wiki Extension of Dialogue Flow Framework for conducting
small talks about some popular topics for which we did not have script-based skills. These fast
but considerable improvements increased our daily ratings to almost the best values during the
competition.

An important dialogue management feature, linking questions, was widely used to lead the user to
some scripted skill. However, random use of these linking questions might not be the best choice
as it can give the impression of an unreasonable topic change. So, on May 6 we added pre-linking
connection phrases which take into account the recent topic if available, and topic to be linked to.
These phrases are citations, short interesting facts, personal opinions, and simulated thoughts of our
socialbot.

In mid-May, we deprioritized for response candidates with the same entities as in the user utterance,
and also ramped up the scripted skills priority even if user dialogue act requires some particular
dialogue act. On May-26, we decided to stop offering topic choice in the beginning of the dialogue.
A few days later we also made socialbot’s sensitive mode to be enabled only for selected dialogue
acts for sensitive topics (e.g. opinion request on politics), so now user toxic utterances were processed
like the rest of the utterances. In the end of May, new ranking model for the response candidates
was finally integrated to the Response Selector. Experiments with Response Selector as well
as removing topic suggestion in the dialogue beginning could lead to ratings decrease.

We tried out several different strategies for dialogue beginning: asking how user is doing, asking for
the user’s name, asking about hobbies, asking about daily life, immediate switching to scripted topics.
More than half of the dialogues are finished right after invocation, half of the rest of the dialogues
contains less than 2 dozen utterances, so the dialogue beginning strategy could significantly impact
on ratings of short dialogues. Therefore, our focus on the content at the cost of the more careful study
of the dialogue beginning could be the key reason our total rating didn’t grow well enough. However,
the average rating of the long dialogues increased significantly during the Challenge (see Figure 3).
The first half of June was finally dedicated to dialogue beginning fixes, including improvements
to the scripts discussing work and school as the most popular weekday activities. On June 10, we
fixed response time previously accidentally increased by reducing information stored in the dialogue
state. Careful reading of the dialogues demonstrated that while asking for weekdays activities in
the beginning of the dialogue can potentially help to separate users into age groups (child or adult),
it is not easy to provide the user with some engaging feedback on their daily life. So, on June 20,
we changed the greeting part to the «how are you» exchange followed by linking to one of the
scripted skills. At the same time, we fixed a bug with enabling Topic Recommendations. We also
integrated compliment acknowledgements to user opinion expressions to please users.

On June 26, we continued our experiments with Response Selector disabling priorities for the
scripted skills when the user’s dialogue act expects a given action. A few days later we also conducted
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AB-test to compare two similar strategies for user dialogue acts which require some actions: (1)
choose among response candidates with the expected dialogue acts with ranking model, (2) join this
candidate of the expected dialogue act response with the next script line using special «Let us get
back» connections. This AB-test showed no statistically significant differences between these two
versions of the socialbot.

In Figure 4 one can find dialogue lengths in utterances which decreased significantly during Semifinals
period (shorter by about 10 utterances). Simultaneously, we were increased socialbot utterance length
adding acknowledgement to show user our understanding and sympathy, pre-linking connection
phrases to make topic switching more coherent, discussions based on information sharing by Wiki
Skill. Therefore, increasing average bot utterance length potentially could negatively affect dialogue
length. In Figure 5 we demonstrate daily portion of dialogues with returning users among all dialogues
per this day. During Semifinals about 8% of the dialogues per day were conducted with users having
5 and more conversations per month (user identifiers are reset every month), and about 4% of the
dialogues – with users having 20 and more conversations per month in total. Although DeepPavlov
Agent allows to store information about previous user conversations, we do not utilize it properly.

Figure 4: Daily average of dialogue lengths in
utterances (on the left y-axis) and daily average of the
socialbot utterance lengths in tokens (on the right
y-axis). The dialogues containing only invocation and
stop commands by user are not included. Dialogue
length significantly decreased during semifinals while
we were working on increasing socialbot utterance
length.

Figure 5: Daily fraction (among all dialogues
this day) of conversations with users returning
5 and more and 20 and more times in total. User
identifiers are being reset every month. Average
portion of returning users increased almost twice
during semifinals period.

5 Conclusions

One of the major tenets of this Challenge for us was proper integration of the Knowledge Graph
information into the dialogue. We use KGs for natural language understanding (NLU) and natural
language generation (NLG) across both slot-filling and neural generative models. KGs are also used
to direct or even change the dialogue flow. Although commonsense completion models sometimes
provide inadequate predictions, we actively utilize them for NLU, and with further improvements of
the commonsense generation models we plan to expand their use for NLG.

We also paid a lot of attention to the scenario-driven content of the dialogue to provide a coherent
multi-turn dialogue flow. We introduced a Dialogue Flow Framework for the scenario-driven
skills development, presented its extension for fast knowledge- and annotation-based scripts, and
significantly expanded the number of the scenario-covered topics. Moreover, we implemented the
universal knowledge-based skill capable of conducting consistent albeit limited subject-specific
conversations.

Having a lot of content requires an even bigger focus on the dialogue management. We introduced a
rather sophisticated response selection algorithm taking into account dialogue acts, topics, as well as
entities of the conversation. Although it prioritizes scenario-driven skills and user-expected dialogue
acts, this is only one of the first steps towards the goal-aware dialogue management.

Taking into account that half of the dialogues are finished immediately, and another quarter of all
dialogues is shorter than 20 utterances, user impression from the dialogue beginning could play
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one of the most important roles. We tested several different strategies including direct offering of a
particular topic by the socialbot or complete freedom of topic selection by the user. However, a lack
of the socialbot’s flexibility in an open topic discussion spoils the user impression in the beginning of
the conversation.

Another aspect of the Alexa Prize Challenge 4 is an increasing number of the dialogues with returning
users that leads to an importance of using previously gathered information about the user to establish
and maintain closer relations. Currently, we work only with the high-level user information, but
we could further improve the relationship between user and bot by diving deeper into the history of
interaction.

6 Future Directions

6.1 Dialogue Flow Framework and DFF Markup

While introduction of the DFF allowed our team to introduce a number of scenario-driven skills
enriched with the information coming from a plethora of the annotators rapidly, development of the
DFF-based skills can be challenging for the newcomers. Our plan is to evolve our Wiki Extension of
DFF further by transforming it into a Python-based DSL to significantly simplify development of the
scenario-driven skills using DFF and DeepPavlov Agent’s annotators.

6.2 Dialogue Act Driven Skill Generation

Our experiments showed an importance of dialogue acts for natural language generation. While
dialogue acts provide discourse-level utterance classes, one could not derive enough pragmatical
knowledge from them. That is, even if the proper response dialogue act is known, one could not
simply pick a random utterance labeled with this act from some corpus. A straightforward source
of additional information here is the information kept in the Dialogue State, such as the slot-filling
information. Anyway, the more advanced method of constructing the response text could help.
Finally, MIDAS dialogue acts could simply be not the best choice for discourse-level utterances
labeling. The use of Speech Functions (see section 3.4) seems to be the promising alternative here.

6.3 Goal-Aware Dialogue Management

By the end of June 2021, we have made major contributions to our Goal-Aware Dialogue Management
tenet, with work spanning response selection approach, discourse management and speech functions
classification, basic bot persona modeling, and user modeling, as well as the integration of the Big5
personality detection. However, when comparing our progress with our original plans, it is clear that
we have not reached our own goals yet. There is a lot of work lying in front of us with the focus
on integrating and properly using these technology components towards building an engaging and
thoughtful conversational partner.

We introduced Entity Storer as a mechanism to store user’s and socialbot’s attitude to the entity
mentioned in the conversation, and to maintain coherent socialbot’s relation to the discussed entities
across the entire dialogue. In addition to that, we have introduced Bot Persona Skill as a
mechanism to tell about socialbot’s favorites and share opinions towards mentioned entities based
on the relations to the top of the hand-picked categories. One of our future directions is building
Knowledge Graphs for storing users’ and socialbot’s relations to the mentioned entities mapped to
the world’s KG. This mapping will enable our socialbot to calculate and predict user’s relation to the
higher-level categories beyond individual entities. Finally, we defined several personas based on the
different preferences towards these categories. Our vision is to further extend our socialbot’s KG by
adding several hand-crafted personas and then adding a mechanism for generating a believable bot
persona based on these personas and first user utterances in the conversation.

In the current version of the Bot Persona Skill, we only explored a socialbot ability to express
and explain its opinions as well as telling the backstory about their favorite things. In its future version,
we plan to expand this skill with the functionality towards driving the conversation based on the
socialbot goals. It will also include functionality imitating socialbot emotions, making it believable
that user actions influence socialbot emotional level. We expect this approach to make conversations
more engaging and personal and to build an emotional connection between the interlocutors.
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6.4 Discourse-Driven Dialogue Strategy Management

We plan to integrate Speech Function Classifier and Predictor at multiple levels, including
Skill and Response Selectors, as well as in our Dialogue Flow Framework. With Speech
Function Classifier, we will be able to identify multi-turn conversation fragments by mapping
Speech Functions to the higher-level concept of discourse. We envision this Discourse element to be
represented as a sequence of speech functions used by the interlocutors within the dialogue, CoBot
Dialogue Act Topics, mentioned entities, active goal, and both user and socialbot relations to
those entities. This component will further extend our Dialogue State with the structured information
about the discourses within the conversation.

Finally, with the Speech Function Classifier, Discourse Detector, as well as with the
understanding of user and socialbot goals, we will be able to dive deep into enabling our socialbot to
strategically control the conversation. Our vision is to enable 3 levels of dialogue planning: (1) Goals,
including helping a user to reach their goals as well as following socialbot’s interests, (2) Discourse,
with the focus on enabling the bot to continue a current Discourse or begin a new one, and (3) Speech
Functions, with the focus on enabling bot to pick the next Speech Function based on the Discourse
and the key Goal picked by the socialbot at the previous dialogue planning levels.
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A Knowledge-Grounded Response Generation Example

Target response from the dataset Fine-tuned Blender90M
that uses the first
knowledge sentence

Fine-tuned Blender90M
that uses three
knowledge sentences

Knowledge:
There is a 274-line poem featuring roughly 800 irregularly pronounced English words called
The Chaos.
The real-life soap opera behind the publication of Emily Dickinson’s poems.
So did critic Thomas Wentworth Higginson, with whom Emily had corresponded: despite
many arresting phrases, he pointed out, nothing scanned or rhymed properly.
Utterance: Bringing back so many memories, i think i might listen to that soon. Demetri
Martin wrote a 224 word palindrome poem.
Funny! You really can do so much
with poetry! There’s also a poem
that’s 274 lines, and features about
800 irregularly pronounced English
words. It’s called The Chaos. I’d
like hear that one read out loud!

That is probably an
episode of the show.
The rest of the show
is not so good, i think.
The episodes without
the chaos, are called a
chaos.

Yep. I didn’t know that.
Good, I have a thing for
giving back. Take care!

Knowledge:
One of the first typewriters was initially called a «literary piano».
When Mabel visited their home to play the piano, she occasionally glimpsed a flitting swirl of
white in the next room, sometimes even received a note of thanks for calling, but she never
actually spoke with the reclusive, almost spectral Emily.
There is a 274-line poem featuring roughly 800 irregularly pronounced English words called
The Chaos.
Utterance: Yeah that seems like the right name for it. Do you listen to or play the piano?
Funny you should ask! I was just
going to ask if you knew that they
used to call typewriters «literary
pianos»! Isn’t that funny? I like
to bang on the keyboard every now
and then!

Yeah , I love piano! One
of the first typewriters
was called a «literary
piano.» So I kind of feel
sorry for piano owners.

No, but I learned to play
piano. I like to play the
piano, but not the flute.
How about you?

Knowledge:
Steam pianos used to exist, and they could be audible for miles.
When Mabel visited their home to play the piano, she occasionally glimpsed a flitting swirl of
white in the next room, sometimes even received a note of thanks for calling, but she never
actually spoke with the reclusive, almost spectral Emily.
There is a 274-line poem featuring roughly 800 irregularly pronounced English words called
The Chaos.
Utterance: That’s all I do is bang on them while missing the keys I’m aiming for, lol! Nice
chatting with you.
Good thing you’re not playing on an
old steam piano! They’d hear you
for miles around! Goodbye!

Oh wow, I think I’m
missing the point. Thank
you! I love chatting
with you, and it’s great
chatting with you as well!
Have a nice day!

Same! Do you have a
steam pianos? I love
them! Apparently, you
can buy them online!

Table 8: Example conversation with real targets from the dataset and predictions of two fine-tuned
models with different lengths of grounding knowledge. The text highlighted in bold shows the
matches between grounding knowledge information and phrases in the predicted model responses.
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B Example of dialogue with Wiki Skill small talk script

Figure 6: Examples of Wiki Skill utterances. Bold - which words were used for checking of conditions, bold
italics - extracted entities and filled slots, bold underlined - facts from Wikipedia and wikiHow. The dialogue is
not with a real user.
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C Parsing of Wikipedia pages

Entity
type

Wikidata types Wikipedia page headings

animal Q16521, Q55983715 distribution, relationship with humans, behavior,
in popular culture

athlete Q2066131, Q18536342 club career, international career, player profile,
records

team Q20639856, Q847017 support, stadium, colors and mascot, club rivalries,
records

musician Q488205, Q36834, Q177220,
Q753110

compositional style, musical style, vocal style,
music career

band Q215380, Q105756498 early years, breakthrough success, band split-up,
new line-up, musical style, development

author Q36180, Q49757, Q214917,
Q6625963, Q28389

fictional works, critics by other authors, life and
career

book Q571, Q277759, Q8261,
Q47461344, Q7725634, Q1667921

composition history, principal characters,
background, film

game Q7889 game modes, multiplayer, customization, films,
virtual reality

film Q11424, Q29168811, Q24869,
Q202866

plot, production, development, filming locations,
music, casting, special effects

Table 9: Examples of headings for paragraphs from Wikipedia pages for different entity types,
extracted with Fact Retrieval.
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D DREAM Socialbot Components

All used in DREAM 2 components are presented in Figure 1. All components not described in this
Appendix have not been changed from the original DREAM [23].

D.1 Annotators

D.1.1 User Input Annotators

All annotators except ASR Processor accept raw ASR texts composed by ASR hypotheses with the
highest probabilities.

SpellCheck is a pattern-based component to rewrite different colloquial expressions to a more formal
style of conversation. All components in the pipeline accept preprocessed user utterances.

Combined classifier is a BERT-based model, that was built on top of the following models: Custom
CoBot Topics classifier, Custom CoBot DialogAct Topics classifier,Custom
CoBot DialogAct Intents classifier, Sentiment Classifier, Emotion Classifier
and Toxic Classifier. Specifically, we utilized the dialogue data from the Alexa Prize
Challenge 3 with annotations by all six models (CoBot models as API) and trained the BERT-base
model on these annotations (without history), treating them as «gold» labels. All labels were
considered to be independent from each other.

MIDAS Classifier is a BERT-based model trained on a semantic classes subset of MIDAS
dataset [44]. This classifier takes as an input sentence with previous socialbot utterance and returns
probabilities of different semantic dialogue acts according to the MIDAS annotation scheme.

CoBot Entities is built as API service on top of the Amazon Conversational socialbot Toolkit
(CoBot) [21]. CoBot Entities returns list of detected entities labelled with types, e.g. «person»,
«videoname», «sport», «misc».

Entity Linking finds Wikidata entity ids for the entities detected with CoBot Entities annotator.
For each entity substring, candidate entities are ranked using Wikidata entity descriptions to find the
entity which is the best fit for the context.

Wiki Parser extracts Wikidata triplets for the entities detected with Entity Linking.

Fact Retrieval extracts facts from Wikipedia and wikiHow, which are used in topic DFF-based skills,
in Knowledge Grounding Skill, and in Text QA for answering factoid questions. The annotator
has a set of Wikidata entity types for each topic (for example, «athlete» and «team» for the topic
«Sport») and extracts facts from Wikipedia pages for these entities, marked with the corresponding
headings (for example, for an athlete the annotator will look for Wikipedia paragraphs with the
headings «club career», «international career», «player profile», etc. and return the list of paragraphs
with these headings). These annotations are made so that a topic skill could use a fact of a specific
subtopic, for example, tell about the club career of an athlete.

KBQA answers user’s factoid questions based on Wikidata KB. The annotator takes as input entity
ids, detected with Entity Linking, extracts triplets from Wikidata, which contain the entity, and
ranks these triplets to find the one which gives the answer to the question.

Text QA answers user’s factoid questions using textual facts extracted with Fact Retrieval. The
service uses the model which detected the spans of the answer in the text and gives as output the
sentence which contains the answer.

Entity Storer is a rule-based component, which extracts from the user’s and socialbot’s utterances
entities if opinion expression is detected with patterns or MIDAS Classifier and saves them along
with the detected attitude to dialogue state.

Speech Function Classifier is a hierarchical algorithm based on several linear models and a rule-
based approach for the prediction of speech functions described by Eggins and Slade. Classifier takes
the user’s current and previous utterances as an input and outputs one label, i.e. a speech function, for
a current utterance.

Speech Function Predictor yields probabilities of speech functions that can follow a speech function
predicted by Speech Function Classifier.
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Personality Detection uses a Big5-based mechanism to identify the psychometric profile of the user.

D.1.2 Candidate and Response Annotators

Response Candidate Annotators include Combined Classifier, MIDAS Classifier, CoBot
NounPhrases, Blacklist Words Detector, Speech Function Classifier and Speech
Function Predictor described in D.1.1 as well as CoBot Conversation Evaluator and
Hypotheses Scorer.

As soon as the final response has been selected by Response Selector, we further process it with
Sentence Segmentation, NER, CoBot NounPhrases and Sentence Rewriting Response
Annotators. The final response annotations allow us to work with the outputs from the
heterogeneous skills such as template-based ones with punctuation, retrieval, or generative skills in
the same way.

D.2 Skill Selector

Skill Selector has few changes from [23]. The clue difference is the constriction of sensitive mode
cases. Now the sensitive mode is used for personal questions on restricted topics and is not used for
user utterances with obscene language.

D.3 Conversational Skills

D.3.1 Linking Skills

Appropriate transitions from one skill to another create the smooth user experience. Skills can add
templated triggers to enable other skills on the next dialogue turn. When the script is short, or the
user declines offered topics, the dialogue could be seen as incoherent because the socialbot quickly
changes the topic. Therefore, we also added a special list of connection phrases between different
topics, which are covered by scripted skills. For almost all pairs of topics, we have a variety of
citations, interesting facts, or thoughts that are related to both topics simultaneously. For every topic,
we also have a list of interesting previews to be used in case of not presented connection phrases for
the previous and current topics or in case of no recently discussed scripted topic.

D.3.2 Template-based skills

Movie Skill is implemented using Dialogue Flow Framework and takes care of the conversations
related to movies. It is inherited from the previous Movie Skill version and almost repeats the
structure of the conversation. In DREAM 2 we use another way to extract movie title from user
utterance based on CoBot Entities. We collected a list of movies with high rating and low enough
number of reviews, so Movie Skill is able to recommend movies including of specific genres.

Book skill detects book titles and authors mentioned in the user’s utterance with the help of the
Wiki parser and Entity linking and recommends books by leveraging information from the
GoodReads database5. The skill can discuss genres of books, their storylines, and their publication
years. It can also suggest books by author or by genre to the user. Apart from that, this skill has
several other scripted lines of dialogue. Overall, the skill is inherited from the previous Book skill
version, but now it uses different sources of information ( WikiData instead of Evi), which allows for
broader and more interesting dialogues.

Small Talk Skill asks questions using the hand-written scripts for 25 topics, including but not limited
to love, sports, work, pets, etc. Most of the topics are now covered by specific scripted skills or by
Wiki Skill, so the Small Talk Skill can be considered as a simple dummy for cases of failing
scripted skills.

Food Skill is constructed with Dialogue Flow Framework to encourage food-related conversation.
It can talk about interesting food facts and discuss different world cuisines, healthy meals that are
easy to cook, and favorite food.

Generic Responses Skill, a yet another Dialogue Flow Framework skill, is designed to support
extrovert users’ desire to talk with the socialbot in a dominant fashion. It utilizes Personality

5https://www.goodreads.com/
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Detector to identify extrovert users, then uses Speech Function Classifier to identify
utterances with the Speech Functions that can get generic responses as the reply, and then provides
these generic responses back to the user.

Gossip Skill is implemented with Dialogue Flow Framework to encourage conversation about
celebrities. It was our early exploration in the Gossip conversation genre modeling. Initially
designed around Speech Functions, it was developed without them given that our Speech Function
Classifier was going through the second iteration of development after the first one didn’t provide
acceptable accuracy levels. Based on the output of News Api Annotator and Wiki Parser, this
skill can discuss different celebrities: their basic and non-basic occupations, news about them, their
creative works, and their sports teams. This skill also introduced a basic mechanism for reflecting and
maintaining the socialbot’s opinion towards the discussed entities as well as remembering the user’s
opinion towards them. This mechanism was later expanded and introduced as the Entity Storer.
Discussion of non-basic occupations was previously included in Celebrity Skill.

Bot Persona Skill aims to discuss user favorites and 20 most popular things with short stories
expressing the socialbot’s opinion towards them.

Animals Skill is created using Dialogue Flow Framework and has three branches of conversation
about animals: user’s pets, pets of the socialbot, and wild animals. The script about the user’s pet
asks about the name and breed of the user’s pet, asks how the user plays with his pet, whether the
user loves his pet etc. The script about pets of the socialbot tells about a cat or a dog and asks the
user’s opinion. The script about wild animals extracts the animal entity from the user utterance, asks
some questions about it, and then tells facts about the animal.

Wiki Skill is created using Dialogue Flow Framework. The skill is used for making scenarios
with the extraction of entities, slot filling, facts insertion, and acknowledgments.

• Anime script shares the information about popular animations and offers the user to learn
how to «Make-an-Anime» from wikiHow.

• Art talks with the user about drawing, photography or about memes. The scripts use
Wikipedia and wikiHow facts. Drawing script can suggest the user tips on how to improve
drawing skills based on the wikiHow article The script also can tell facts about the user’s
favourite painter.

• Bitcoin script shares information how to mine and buy bitcoins from wikiHow pages
«Mine-Bitcoin» and «Buy-Bitcoins».

• Cars script asks the user which he has a car, then asks different questions and comments on
the user’s answers. The script suggests the user the tips from wikiHow about reducing the
cost of car maintenance and how to keep warm in a car in cold weather.

• Chill script asks the user how he spent his free time (listened to music, played games) and
has links to music and gaming skills if the user mentions one of these activities.

• Dinosaurs script tells the user about pre-scientific history, early dinosaur research, and
discoveries of dinosaurs based on Wikipedia content.

• Family script comments on the first user utterance where one of the family keywords was
mentioned based on detection of different patterns . For example, if the user said that he
played with his brother, the script asks what games did he play) and then asks some general
questions about the user’s family, followed by acknowledgments.

• Friends script recommends how to «Make-a-Friend-Laugh» and «Maintain-a-Friendship»
to users who have friends, and shares info how to «Make-Friends» for users who have no
friends. It also asks user questions about his friends.

• Harry Potter script asks the user different funny questions based on Harry Potter films, for
example, «Do you think that using magic outside of Hogwarts is fine?», suggests the user
tips for making a potion from Severus Snape’s lab etc.

• Hiking script can advise the user on how to «Choose-a-Hiking-Vacation-Destination» and
«Choose-a-Good-Hiking-Dog» using wikiHow.

• Hobby is aimed to talk about user hobbies. The skill suggests ways to find a hobby from
wikiHow if the user does not have one, discusses popular life hacks and tells how to keep
hobby costs down.
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• Love script discusses relationships with the user using several wikiHow pages. If the
user is in relationships, the script suggests how to be more romantic. If the user is not in
relationships but loves someone, the script tells how to catch the crush’s attention and make
someone fall in love. Otherwise, the script offers advice on how to find love.

• Politics script helps interested in politics users to understand politics itself and how to
discuss it with other people. For those not interested in politics, the script suggests how to
friendly avoid talking about politics.

• School script is turned on if the user answers «school», «study» or «homework» to the
question «What do you do on weekdays» or mentions these keywords. The script contains
questions about different aspects of the user’s school life (favorite subject, school sports
activities) and suggests trying several pranks on teachers and classmates.

• Sleep script tells the user different tips for better sleeping, for example, listening to sounds
of the rain or relaxing music.

• Space script uses parsed Wikipedia page about space exploration to tell about first outer
space flights, space station, and future of space exploration.

• Smartphones script asks the user about his smartphone OS (IOS or Android) and tells tips
from wikiHow pages how to speed up an Android smartphone or transfer files from iPhone
to iPad.

• Robots script is based on Wikipedia pages «Robot» and «Unmanned aerial vehicle» and
also suggests the user building a simple robot from the wikiHow page.

• TikTok script tells the user how to become popular in TikTok (from wikiHow page).
• Work script is turned on of the user answers «work» to the question «What do you do on

weekdays». The script contains several questions about the user’s job (his occupation, how
he relaxes after work etc.).

D.3.3 Template-based Skills with External Services

News Skill presents the top-rated latest news about entities or topics using the GNews API6. The
skill supports the functionality from DREAM 1.0. This skill also offers news about extracted entities
in a high-confident manner if the user asked to talk about this entity and low-confident manner if the
user just mentioned the entity.

Gaming Skill also provides video games discussion. While Game Skill focuses mainly on game
charts, Gaming Skill is for more general talk about video games. The skill collects information
about video games via IGDB API7. Since the API responds not fast enough, we had to store locally
information about approximately 150 most popular video games. Apart from general comments
about games, Gaming Skill can lead specialized discussion about video game Minecraft8. Unlike
Game Skill, Gaming Skill was created using Dialogue Flow Framework.

D.3.4 Generative Skills

Knowledge Grounding Skill generates a response based on the dialogue history and provided
knowledge related to the current conversation topic. It uses a ParlAI Blender 90M model fine-tuned
on the Topical Chat Enriched dataset.

Wikidata Dial Skill generates an utterance using Wikidata triplets. The skill extracts triplets which
contain an entity from the user utterance. The BERT-based ranker finds the most relevant triplet,
DialoGPT takes as input this triplet, dialogue history and generates the utterance. The models were
trained on OpenDialKG dataset.

D.4 Response Selector

Response Selector is a DREAM agent component that makes the final decision about the content
of the response to be surfaced to the user. Response Selector reads from the Dialogue State

6https://gnews.io
7https://www.igdb.com/api
8https://www.minecraft.net/en-us
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candidate responses generated by the active conversational skills and annotated by the Response
Annotators. Response Selector is not restricted to select the final response only from the
response candidates but can also generate a final response as a combination of available candidate
responses.
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E Dialogue Flow Framework

This section contains an example of visualization of a skill based on DFF, the visualization is built
automatically and helps to visualize the dialogue graph, which can greatly simplify the development.

Figure 7: Visualisation of DFF Food Skill scenario. The graph shows the nodes that the user passes through
during the dialogue. The transition checks the condition and returns the corresponding response.
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F Topic Recommendation Results

Topic F1-score, % Positive Negative All

«let’s chat» link questions «let’s chat» &
link questions Samples Samples Samples

Book 39.8 50.7 54.2 171 144 315
Movie 49.4 54.7 54.4 334 244 578

Animals 62.6 62.0 61.2 609 223 832
Food 28.1 54.1 48.8 318 195 513

Travels 25.8 52.2 50.7 286 187 473
News 44.8 41.5 49.1 212 224 436
Sports 45.9 40.0 42.2 223 264 487
Music 33.7 46.7 45.8 271 159 430
Games 37.1 51.9 48.2 346 245 591

Table 10: F1-weighted scores of the ConveRT model predictions for different topics and for different
responses sets. The evaluation is conducted on the dialogues with real users, negative samples
are generated by random assignment of predicted topic. The number of samples with positive and
negative labels can be found in corresponding columns. The ConveRT model is used as pre-trained
without any fine-tuning.

Topic F1-score, % Positive Negative All
Keywords BART Samples Samples Samples

Book 37.1 45.9 111 51 162
Movie 49.4 48.3 106 57 163

Animals 45.3 47.6 138 63 201
Food 34.9 40.1 176 80 256

Travels 39.9 50.1 177 83 260
News 47.5 47.0 120 126 246
Sports 49.8 47.8 106 135 241
Music 46.8 46.5 16 8 24
Games 34.5 41.1 221 129 350
Science 47.8 49.1 195 141 336
Gossips 51.1 55.8 222 145 367

Table 11: F1-weighted scores of the TF-IDF Model for different topics and for different methods of
subreddits classification. The number of samples with positive and negative labels can be found in
respective columns.
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