Emory IrisBot: An Open-Domain Conversational Bot
for Personalized Information Access

Ali Ahmadvand; Ingyu (Jason) Choi, Harshita Sahijwani, Justus Schmidt,
Mingyang Sun, Sergey Volokhin, Zihao Wang] Eugene Agichtein®

Emory University
Department of Computer Science
Atlanta, GA, USA

Abstract

We describe IrisBot, a conversational agent that aims to help a customer be in-
formed about the world around them, while being entertained and engaged. Our
bot attempts to incorporate real-time search, informed advice, and latest news rec-
ommendation into a coherent conversation. IrisBot can already track information
on the latest topics and opinions from News, Sports, and Entertainment and some
specialized domains. The key technical innovations of IrisBot are novel algorithms
for contextualized classification of the topic and intent of the user’s utterances,
modular ranking of potential responses, and personalized topic suggestions. Our
preliminary experimental results based on overall customer experience ratings and
A/B testing analysis, focus on understanding the contribution of both algorith-
mic and surface presentation features. We also suggest promising directions for
continued research, primarily focusing on increasing the coverage of topics for
in-depth domain understanding, further personalizing the conversation experience,
and making the conversation interesting and novel for returning customers.

1 Background and Overview

Our goal is to develop a conversational agent that helps the user be informed about the world around
them, while being entertained and engaged. Our envisioned social bot, IrisBot, will incorporate real-
time search, informed advice, and latest news recommendation into a fluent and coherent conversation.
IrisBot aims to discuss and share information on relevant latest topics and opinions in the News,
Sports, Entertainment, and general knowledge, by accurately detecting user’s intent, both explicitly
stated and implied from the conversation context. Finally, the information will be made more engaging
and entertaining by incorporating humor and detecting emotional cues from the user’s utterances. To
accomplish this, IrisBot aggregates search and recommendation over a variety of information sources,
and employs proactive recommendation strategies, simulated emotion, and incorporate sequence
to sequence learning to optimize conversation fluency. At the end of the conversation, our goal is
for the users to be informed by in-depth discussions of topics of interest, while entertained through
expressions of empathy, humor strategically placed to liven up the conversation.

1.1 Background

Conversational agents have been an active area of research for decades, starting from domain-specific,
rule-based systems such as ELIZA [24] and PARRY [7]]. More general task-based dialogue modeling

*Student authors are in alphabetical order.
"Student team leader. Email: zihao.wang2@emory.edu
¥Faculty advisor. Email: eugene.agichtein@emory.edu

1st Proceedings of Alexa Prize (Alexa Prize 2018).

approaches(l], [2], [10], [3], [18]) have been explored to break down larger tasks into smaller
tasks, or to extract and compile prior knowledge from dialogue corpora. These models nevertheless
require extensive effort to customize and con gure for each domain and knowledge source, and were
not designed for conversations in open domains.

With the availability of large amounts of dialogue and social data online, data driven systems have
shown promise. Reinforcement learning based systet8§ (26], [12], [27], [25]) and deep learning

based systemsZ(], [4], [14]) have been both extensively studied and applied. These systems have
the advantage of adapting to new domains by collecting corresponding datasets and retraining the
model. However, these systems still closely rely on training corpora or restricted information, without
the ability to query external data sources, thus limiting their ability for informative conversation or
conversational search. Unfortunately, fully automated domain-independent conversational agents are
still beyond the published state of the art.

1.2 Overview

For this 2018 Alexa Prize challenge our main goal has been to suppoversational search
Recently, a theoretical framework was proposed to describe the variety of interactions and feedback
available in conversational sear@g], which provided a valuable framework for subsequent studies.
Unfortunately, due to the inherent technical challenges in elding an open-domain conversational
search system, previous empirical studies have been limited &lfy.Ajula et al.[f] and Trippas

et al.[19]). Thus, elding an open-domain conversational search system such as IrisBot for live
customer traf ¢ goes far beyond the existing state of the art in conversational search. This year we
redesigned from ground-up our entry in last year's AlexaPrize 2017 compée2for@ur new IrisBot
system aims to perform well in a realistic, open-domain, effectively unrestricted conversational
setting, while still engaging and entertaining customers to support non-information-seeking aspects
of conversations.

Our main technical innovations in this Challenge are the novel solutions to the following critical
research problems:

Topic and intent classi cation of utterances, using conversation context (Sggtion 3).
Response ranking by aggregating context and classi er signals with response scores (Sec-

tion[4).

Contextual, personalized, and cross-component recommendation ($éction 6).

We rst describe the Irisbot architecture and implementation next (Section 2). Then we describe in
detail the main technical innovations: the topic and intent classi er (Sefction 3), the dialogue manager
and response ranking models (Secfipn 4), and topic suggestion algorithms (Egction 6). We then
overview the main system domain components that perform domain-speci ¢ intent classi cation and
response ranking of their own (Section 5). The classi cation and response ranking algorithms were
evaluated through extensive of ine experiments in with live customer traf ¢ during the semi- nals
period (Section 7), which demonstrate the promise of our approach. We discuss the results, lessons
learned, and outline current and planned follow-up research in Section 8, which concludes the paper.

2 IrisBot System Architecture and Description

IrisBot is designed through loose coupling of domain-speci ¢ components that interact through the
Dialogue Manager. Each utterance is processed to identify the key entities, topics, and intents (as
described below), and is heavily annotated with NLP information helpful for the domain speci c
components to respond to the query. We chose to do “lazy” response evaluation in that the nal
response ranking is performed after each component returns a candidate response, at which point
the responses are ranked and selected based on the combination of the utterance interpretation and
the estimated response coherence and relevance. Thus, each query is processed by every component,
which has a computational drawback of signi cant processing for each utterance, and the bene t of
redundancy and multiple available fallback responses. We chose to optimize the expected response
quality from having redundant options available. Each domain component implements a common
set of interfaces, and is expected to return a score of the response, the response type and topic, and
follow-up suggestion (which could be the same component or a switch to another topic). As a result,

adding new components turned out to be quite easy with the main challenge being to expand the topic
classi er to identify when the new component is relevant.

2.1 Architecture

To implement our proposed framework and remain responsive to the customer queries, we constructed
a distributed system, constituted by Amazon Lambda function, a load balancer that we created, and
actual IrisBot application instances on Amazon EC2. To support up-to-date and fresh content, we
also used a centralized data storage server which was updated often and replicated the fresh content
to all IrisBot application instances. The overall IrisBot architecture is outlined in Figure 1.

Figure 1: IrisBot Distributed Architecture.

The IrisBot Engine (running on each of the IrisBot application EC2 instances) communicates with
customers through Amazon Lambda function which in turn communicates with an Echo device. Each
engine has the multi-threading capability to handle multiple conversations at the same time, with a
global context variable that maintains the context of each conversation. The customers' utterances are
transmitted to the IrisBot Engine by the load balancer, which tracks conversations, manages health
and availability monitoring and as necessary stops or re-starts traf ¢ on each instance autondatically.
After processing, the best response from IrisBot Engine is returned back to the customer. Through the
analysis of the conversations from August 1st to August 15th, 2018, the average response latency is
0.66 second, the 50th percentile latency is 0 second and the 90th percentile latency is 1 second. The
latency is always less than 5 seconds since the time-out threshold is set to be 5 seconds for the system,
within which a relevant or a general default response will be returned. The latency has improved
over the period from July 16th to July 31st, which has the average latency of 0.74 second, the 50th
percentile 0 second and 90th percentile 2 seconds (Latency time is stored as discrete integers, from 0
to 5 seconds).

2.2 Dialogue Manager and Response Selection Overview

The IrisBot Dialogue Manager processes utterances to generate responses using four main execution
steps, which are Pre-processing, Task execution, Post-processing and background information pre-
fetching as outined in Figure 2(a).

Pre-processing includes NLP processing and component task assignment. The initial NLP processing
is a multi-threaded process, running hierarchical topic/intent classi cation, entity recognition, co-
reference resolution, sentiment analysis, and other language understanding tasks. The results of the
language understanding process features are stored into context, enabling dialogue manager and other
components to easily access and utilize these features.

After the pre-processing step, the dialogue manager aggregates this evidence and sends the utterances
in parallel to each domain component. Each component works independently to generate a response,
and noti es the dialogue manager when nished.

“The automatic restart functionality was implemented after a disaster day late in the semi- nals period, in
which two of the application instances were non-responsive at the same time, and were repeatedly returning error
messages to the customers. Needless to say, customers were not happy about this. Our new load balancer now
monitors both instance availability and basic “health” by checking automatically for common error responses.

@ (b)
Figure 2: IrisBot Dialogue Manager (a). NLP Processing (b).

In post-processing, the response ranker lters and ranks the responses by NLP and contextual features,
including classi cation probabilities, response scores and stickiness score (an indicator that suggest
the extent to which the conversation would remain in the same topic domain). By integrating all these
features, it may correct errors produced by the classi er or the process of response generation by
components. After IrisBot returns the best response to the customer, pre-fetching process is executed
while we wait for a customer to think and reply to IrisBot. Pre-fetching is helpful because we can
pre-compute relevant information, retrieve external information (e.g., Web Search results or News
articles) and speed up the overall execution time for the next turn. For the current system, pre-fetching
is used to extract fact recommendations that are related to the response just returned to the user.
Lastly, we have a strict timeout-control mechanism to always return a response within the available
time limit (currently set to maximum of 5 seconds, even though the average response time is about 1
second).

Injecting liveliness and humor into responses : Our focus groups and free-form customer feed-
back alerted us to the fact that our bot sounded too "monotone”. This meant it didn't matter that our
content was good if we sounded too boring. We addressed this concern by modifying the default
speech generation of the responses by using the Amazon Alexa's SSML (Speech Synthesis Markup
Language) capabilities. Speci cally, we created an internal sounds library which was usable by all
components that included a common set of interjections such as “Awesome!”. This allowed our bot to
sound somewhat consistent while livening up the conversation and not sound monotone and boring.
To diversify the responses, we created ‘classes' of interjections such as 'positive exclamations',
'sad’, 'acknowledgement’, etc. We used these classes to diversify the appropriate interjections so
that the customer experience had some variety. We furthermore developed our own pitch and rate
modi cations using the SSML prosody tag to convey excitement, hesitation and emphasis, allowing
the bot to convey appropriate emotions to the customer.

2.3 Language Understanding and Entity Recognition pipeline

IrisBot's NLP pipeline is executed during the pre-processing stage in the Dialogue Manager. Many
different functions, including both heavy and light NLP modules are executed in parallel to reduce

latency. Once each thread is nished, its output is stored in the utterance context maintained by the
Dialogue Manager, enabling easy backtracking for components to make smarter decisions.

Knowledge-Based Named Entity Recognition : To recognize key entities we created an index of

3.5 million entities and their types. That includes all the entities that are present in our relational
ontology, and all the entities that our domain-speci c components can currently handle. Given an
utterance, we use it to query our index and and retrieve all the entities present in it and their types.

Relational Ontology : IrisBot has its own knowledge-base that is modeled as a graph, and stores
attributes of and relations between millions of entities in the index. It has been initially derived

from DBPedia 1] and extended with the entities important to our components. Given an entity,
the ontology server allows us to look up entities related to it, for example for a movie it might be
a directory and cast list, or for a person it might be a spouse or a place of birth, and many other
relations as de ned by DBPedia.

Co-reference resolution Co-reference resolution in a dialogue setting becomes challenging be-
cause our system expects continuous in ux of many different types of entities. It also remains
uncertain whether we should prioritize entities appearing on our responses or on user's utterance.
For IrisBot, co-reference resolution depends on knowledge-based named entity recognition, along
with two main parameters: half-life and bias. Based on half-life, co-reference module continuously
discounts the con dence score as time passes, prioritizing newly appeared entity to selection process.
Bias is used to control weights between entities appeared on utterances and responses. We tuned these
parameters over our development period, and they are incorporated with handcrafted tie-breaking
features to assist selection process. Our future work is to incorporate contextual features to candidate
selection and enable longer co-reference chains to reach earlier utterances.

2.4 Domain-speci c Components

IrisBot currently has a total of 12 domain-speci c components, listed below. This is a uid list as
components are added and occasionally retired (e.g., the WorldCup component was retired after the
conclusion of the 2018 FIFA World Cup). These components are described in more detail in Section 5
below.

Movies and Shows Music and Concerts

News Travel and Activities
Animals Video Games

Cars Sports

Opinions Wikipedia

World Cup Emotional Support

Table 1: Domain-speci ¢ retrieval components

3 Topic and Intent Classi cation

We chose to follow the current state of the art and the Amazon practice, and to identitppiatAnd

intent For example, a customer may request an opinion or recommendation (intent) for a particular
movie (topic). We developed our own state of the art classi ers for this task, as described next, as our
component capabilities and boundaries did not easily map to available classes provided by existing
Amazon Comprehend services and similar. However, we do use these services as input to our own
classi cation.

3.1 Contextual Topic Classi cation

Our proposed model for contextual topic classi cation consists of three phases: Independent Topic
Classi cation, Topic Merging, and Contextual Topic Merging.

Phase 1: Independent Topic Classi cation: For this step we use only the current utterance. The
result of this step is a nonexclusive classi cation vector. For topic classi cation, a Mixture of
Experts Model is applied, which consists of three different classi er that have been trained on
different datasets and also with different parameters and architectures. The topic classi er includes a
customized classi er, an entity classi er, and an amazon annotator. The latency of the Mixture of
Experts Model depends on the classi er that takes the longest time to classify an utterance. In our
system, the slowest classi er takes less than 1 ms; therefore, a sequential model takes at most 3 ms to
complete the classi cation task.

Phase 2: Topic Merging from Mixture of Experts: In this step the outputs of three classi ers
are merged to produce a single topic distribution based on evidence from all of the “expert” base
classi ers.

Phase 3: Contextual Topic Resolution: The third step is Contextual Topic Merging, where the
topic distribution for the previous utterances is used as input to inform the nal topic classi cation
result. To apply contextual merging, a transition matrix between topics is computed based on the
conversation logs, which indicates the transition probability from previous topic to the current one.

The logic and motivation for using the Mixture of Experts Model for this task comes from the
“No Free Lunch Theorem”, from machine learning, which suggests multiple classi ers for decision
making instead of a single powerful modH]. Moreover, according to the promising results for
Convolutional Neural Networks (CNN) models in text classi cation, we used CNN as the base
classi ers [29][9]. Finally, we used a Mixture of CNN models and the Amazon Annotator (as another
expert) for the Topic Classi cation step. The three different models are, 1. our own customized
classi er based on the CNN in diagram below, an entity-based classi er, and Amazon Annotator,
all or which have been used in this Mixture. The customized classi er has been trained on our
customized dataset and the word embeddings has also been tuned on this data. The entity classi er
has been trained on DBPedia dataset to nd a relation between each entity and the corresponding
topic. Consequently, in the Topic Merging step we merge all the results from these three classi ers.
We used topic distributions to disperse the probabilities between different topics.

Figure 3: Mixture of Experts Model.

3.1.1 Semantic and Lexical Classi cation using Convolutional Neural Networks (CNN)

CNN models are used as basic classi ers for both Customized and Entity classi ers, because of
promising results in text classi cations in the recent years. The basic classi er is a CNN model
consisting of 4 layers, an embedding layer of size 300 followed by 3 Convolution layers, any of which
consists of a convolution and a max pooling layer. A Fully Connected Neural Networks (FCNN)
was used for the nal classi cation. In each Convolution layer, 256 Iters of size 2, 3 and 4 were
used, respectively. We used I2-regularization of 0.01 and a dropout of 0.5 to avoid over tting during
training. Lexical and unsupervised features were extracted from text utterances and concatenated
with CNN features to utilize the CNN features. The nal vector was used as input of the FCNN
model for classi cation.

Customized Classi er: we generated more that 50,000 utterances which are customized to our
bot, and the components that the bot supported. Google Word2Vec is used for initialization of each
word embedding. Then, each word has been trained during training to be more customized to our bot.
To use maximum possible number of vocabularies for conversation data, 4 different popular dialogue
or conversation datasets such as Cornell, ubuntu and scenarios, and reddit, in addition to our dataset.
Finally, more than 25,000 frequent words were extracted from these datasets and were been used as

lexical features. To leverage training, we also extracted different unsupervised features like LDA and
cosine similarity between LDA topics, to extract high level clustering features from the utterances.

Entity classi er: The architecture for this classi er is the same as the previous classi er, but this
classi er uses one more Convolution layer; and 256 lIters in each Convolution layer. Finally, a
FCNN was applied for nal classi cation. External features such as cosine-similarity and LDA and

LSI features had been used as unsupervised fea2@$§]. DBpedia entities were used to generate

the dataset. Some general rules were applied to assign every entity to a special topic. E.g. University
Names can be categorized in both News and Tech topics. Each entity is considered as one word and
average Google Word2Vector is used as word embeddings. This dataset contains millions of samples,
as a result the generated dataset is much larger than the customized dataset. We used 3M Google
word2vector as vocabularies to train this model. The word vectors are not retrained during training to
make model more generalized.

Contextual topic post-processing: Contextual information plays an important role in conversa-
tional Al. To leverage our model using contextual information in a real conversation, contextual
Topic Merging phase is proposed. This phase contains two sub steps. First, speci ¢ contextual
topic merging and second global contextual topic merging. In the speci ¢ contextual topic merging,
different heuristics based on our domain knowledge about a speci c topic are used to re ne the
probabilities for a special topic. For example, speci ¢ regular expressions were used to capture some
corner cases, which the proposed Topic Classi er could not classify them correctly. In the global
step, a transition matrix was used which had been computed based on the conversation logs. This
matrix represents the transition probabilities between different topics.

Figure 4: Contextual Topic Merging.

3.2 Intent Classi cation

Building on the Amazon intent ontology, we considered 11 different intent classes, such as Opinion-
request, opinion-delivery, info-request, user-instruction, personal-delivery, topic-switch, topic-
acceptance, DontKnow, repetition, self-harm, clari cation and user-correction (to support ASR)

as our intent classes. The classes of TopicAcceptance and UserCorrection have been added to the
original classes from Amazon. Also, the information-delivery intent is the main (default) intent
supported by domain-speci c components, thus did not need to be predicted with the intent classi er.

Similar to the Topic Classi er architecture, for the intent classi er a 4-layer CNN model was used.

For word embeddings, Google Word2Vec for representing the words, and 512 Iters in each step are
used. Whole 3M vocabularies are used and word vectors did not retrain during training. We also
used transfer learning to improve the generalization of the model. For this purpose, Tensor owHub
features are used as an external featbte Tensor owHub represents a sentence in the vector
space. Those vectors are extracted based on the pre-trained models that had been trained on different
domains and large corpus of data. Moreover, another embedding layer of size 16 was added to train
POS features, and they have been trained during training. Finally, 37 different POS tags from NLTK
have been trained.

The dataset for intent classi er is highly unbalanced, which makes training challenging and might
cause over- tting on the more popular classes such as InformationRequest. To solve this problem, we
created balanced training dataset, and used the output of the topic classi er as an input to provide
additional contextual features for intent classi er. Thus, pipeline of Topic and Intent classi ers is

ultimately used for intent classi cation. For some classes, such as user-correction and repetition
(user asking for repetition), which related to previous utterances, we designed a Post Intent Merging
phase, similar to the Contextual Topic Merging described above. In this phase, contextual features are
taken into account to decide and potentially modify the intent decision to a more likely one given the
conversation context. This is done primarily to deal with important special cases such as recovering
from an error, or remaining in a component for following up to a question asked to a customer.

Figure 5: Intent Classi er.

4 Dialogue Manager and Response Ranking

The Dialogue Manager is at the heart of the IrisBot engine. It manages the conversation context,
which stores all the NLP annotations, classi cation results, and is passed to each domain component
to record their responses. The context object is used for ranking and selecting the responses and
post-processing them before returning to the customers.

4.1 Dialogue Manager: Implementation

As shown in Figure 2, the dialogue manager is a pipeline of utterance processing for natural
language understanding (NLU), component task execution, response ranking and ltering, and
relevant information pre-fetching.

The utterance processing includes utterance ASR thresholding, profanity checking, and multi-threaded
NLP processing. The ASR thresholding checks on the ASR probability input on each possible speech
transcription and compares the largest probability with an empirical threshold. The conversation
goes to an utterance ambiguity state and the user would be requested to repeat the utterance if the
probability is less than the threshold. Profanity check is applied on the utterance and a default
answer and a de ection suggestion would be returned if the utterance is detected profane. If the
utterance passes the previous two checkpoints, a multi-processing NLP processing is executed to
extract features in context for later decision makings. For each NLP function, a thread is designated
with a processing timeout limit of 1.5 seconds. The total processing time limit of all threads is 2
seconds.

The features extracted by NLP processes are maintained in the conversation context. Based on context
information, the dialogue manager then selects components to take in context and retrieve responses.
The are 6 scenarios, as shown in Table 2, for the dialogue manager to make different decisions. For
example, if the user intent is Repetition, only the Special State Component will be selected to repeat
the last response. If the user intent is Information Request, all domain components would have an
equal chance to retrieve responses. Domain components retrieve responses in parallel threads sharing
context information with a timeout limit of 2 seconds for each thread and 2.5 seconds in total.

Scenario Decision
Instruction Request | Special State Component
Pause and Hesitation| Special State Component

SelfHarm Special State Component
Stop Special State Component
Opening and Greeting Conversation Opening Component
Repetition Special State Component

Information Request | Domain Components
Table 2: Conversation States and Component Assignment for Retrieving Responses.

Assigned by the dialogue manager, components retrieve responses, assign them with relevance scores
and follow up scores, and pass them to the response ranking function. The ranking function assigns
each response with a nal ranking score. The nal step is profanity check on the candidate responses
and the best response satisfying all requirements will be returned.

Pre-fetching is a separate thread during the period between returning the response back to a user and
waiting for the next input from the user. It extracts information from the responses, such as entities,
and pre-fetches relevant information for the next turn of conversation.

4.2 Response Ranking: Model and Algorithm

Figure 6: IrisBot Contextual Response Ranker with a hybrid weighted and heuristic ranking strategy.

IrisBot postpones the decision for selecting a response until the candidate responses are returned by
the DialogueManager tasks. Instead of only relying on the topic and intent classi er, the response
ranker takes into account a variety of response and context features, and handles additional domain-
speci ¢ cases and states, as illustrated in Figure 6. Speci cally, for special cases, especially continuing
on the same topic as before, or recovering from an error condition or responding to profanity, the
ranker uses pre-de ned strategy. For all other cases, a weighted combination of topic and intent
classi cation scores are combined with the response scores, and other contextual information encoded
as features for the ranker. This combination of features for ranking the responses is more robust than
just relying on one feature such as the result of topic/intent classi cation. The weighted scoring linear
combination model was tuned based on domain knowledge and development data, but can be easily
extended to use additional features and more sophisticated learning-to-rank models, trained over the
data from the conversations in the Semi- nals.

The most important special cases handled by the ranking model include:

Component Follow-up: in order to maintain conversation ow, the response ranker prioritizes
responses from the most recently active domain component, which may have asked the
person a question on previous conversation turn, and is now expecting to provide a follow-
up response. For example, if person is speaking to the bot about Movies, and asked the

customer about their favorite genre, the response from Movies about the customer's genre
utterance will be prioritized. However, if the customer response is on another topic, the
normal weighted ranking ow will be used.

Special state handling: in case of ASR confusion or other error such as component response
timeout, the ranking model attempts to select the next most appropriate response, followed
by a topic suggestion.

Dealing with rejection: topic suggestion: a common case is that a person rejects a topic of
conversation proposed by the system. In that case, the ranking strategy will recommend
another topic. This recommendation can be random, deterministic (following a pre-de ned
conversation “script”, or personalized: prioritizing topics predicted to be interesting to the
customer. In Section 7 we empirically compare these strategies for topic suggestion.

5 Domain-Speci c Components

We now describe the domain-speci ¢ components which allowed the customer to engage the bot
in more depth on a subset of topics. Speci cally, we decided to build conversations around the
topics of Movies, Music, News, Travel, and general information search. Based on the analysis of
customer interests we also added components for the topics of Cars, Video Games, Animals, Food,
and Sports. Unfortunately, at the time of this report, we have not nished implementing components
with knowledge about Literature and Fashion, but plan to include those components in IrisBot by late
August 2018, along with other planned enhancements described in Section 8.

5.1 Movies and Shows Component

The Movies component is able to hold in-depth conversations on most entertainment-related top-
ics, offer personalized recommendations, and can direct the customer to other related topics. To
accomplish this, this component uses a variety of question and answer templates (which we call
"chat-mode") to provide the framework of a natural conversation, as well as determine customer
preferences to deal with the initial "cold-start" problem. However, we found that to keep the customer
engaged, we must also share immediately useful or entertaining information instead of just asking
questions. The general pattern is asking a question, acknowledging the customer's response, providing
a recommendation, and asking a related (more in-depth) question to provide an even more interesting
or relevant recommendation on the next turn. When the templates are exhausted, the component
switches to pure recommendation mode, by offering what the model estimates to be relevant or
interesting recommendations - and continue in this mode until the customer indicates that they wish
to switch the topic.

Implementation notes: The primary data for movie recommendations was continuously crawled
from RottenTomatoes, and included the movie genres, actors, plot, ratings, etc. The data was then
indexed using the PythamhoosHibrary, to create 2 separate indexes: “fresh movies” (speci cally

the ones currently in theaters) and the rest. Crawling was performed continuously in the background,
updating the indexes nightly. In addition, contents of IMDB were downloaded to provide the list of
important entities (people, TV series) to also be able to discuss shows and series.

For each utterance, domain speci ¢ (more ne-grained) classi er was implemented using decision
trees, which further classi ed a movies-related utterance to determine if the customer mentioned
a movie genre, an actor, or a movie title, along with several other topics. Once the utterance was
classi ed, a query was composed and response generated to return the highest-scoring answer. The
score was computed by combining the topic and intent classi cation described above, combined
with match similarity and other domain-speci ¢ heuristic criteria. The actual response was always
followed by a question, randomly chosen from a recommendation “script” template to offer another
recommendation or to ask for the customer opinion or preference.

Personalized recommendation: Based on the customer responses to the "chat-mode", we the
movie component could provide increasingly personalized and accurate recommendations of movies.
As IrisBot often starts with offering to discuss during the rst few turns of the conversation, a large
majority of returning customers have had some history of interaction with Movies. We used that

10

history to provide already personalized suggestions, based on entities they previously liked, such as a
favorite genre, actor, or director.

5.2 Music Component

Music was the second most popular topic of conversations with IrisBot. In its interaction model
and implementation, Music is similar to the Movies component described above. This component
provides answers to many music-related questions, offers personalized recommendations, and can
hold general music conversations with the customer with the goal of making a more relevant music
recommendation or providing interesting information. Just as Movies component does, the Music
component also attempts to chat with the customer to gather indicators of interest for music genres
or sub-genres, artists, and attempts to offer similar artists, genres, or provide general information
of interest. Initially the Music component was focused on concerts, until it became clear that the
majority of customers were not interested, and the topics and recommendation script was revised to
prioritize other sub-topics such as trivia, recommendation of celebrity news about an artist, and other
fresh information.

Implementation notes The Music component used multiple open Web APIs to gather the data,
including Billboards, SeatGeek, Spotify, and lastFM.

The customer utterances were classi ed into music-speci ¢ ne grained intents (such as request for
recommendation, playing songs, singing, etc). A Decision Tree classi er was trained on historical
customer utterances to identify seven most popular music-related intents. We were able to achieve
higher accuracy than that in Movies with more classes, as Music classes were both semantically and
syntactically diverse, which allowed for cleaner division. The scoring of the responses combined
both the context and Topic Classi cation. Keyword-based match was the primary signal for the
internal music response scoring. Just as for Movies, this component also followed each response with
a question, to both keep the customer engaged and to also gain additional information to improve the
recommendation of the next response.

5.3 News Component

The news component is responsible for updating the customer with breaking or trending news, as
well as responding to all news-related or celebrity-related queries. This component aggregates data
from multiple news sources, including the provided news articles and summaries snippets from The
Washington Post, Reuters newswire and RSS feeds, and a variety of other sources using the news API.
For speci c queries that cannot be answered with the local index above, we fall back to the Microsoft
Bing news search API. We also used Google trends to identify the trending news topics for the past
hour.

Information intents addressed : The news component attempts to satisfy the most common
news-related information needs, speci cally:

1. Trending news: list of the trending news topics.
2. Overview of the day's news (brie ng or summary).

3. News from a speci ¢ category (politics, sports, technology, entertainment, business, health,
world, and the U.S.)

4. News on a particular topic or entity.

Response retrieval and scoring : For ranking news on a particular topic, we retrieve the initial

pool of results using the default news ranking from Bing news API. We then re-rank results by how
early the topic appears in the news, because on a voice interface, it's easier for the customer to know
that the response is relevant if the topic they asked for appears sooner. Also, after returning the news
with the highest score, if the topic appears in multiple categories of news (for example, a story about
“Facebook” could be in both business news and technology news or even in Politics), we ask the
customer to pick the category they want. We also get the trending news topics for each hour using
Google trends. If the customer asks for news without a particular topic, we ask them the category
they want news from, in order to narrow down to their interest.

11

Personalization : We keep track of the users' categories of interest, and boost the news articles
that belong to that category while ranking. The intuition is that for many popular news topics, we
can prioritize the categories that match the customer's interests, based on the conversation so far. We
also experimented with boosting entities in the conversation so far, but it is not yet clear whether
that strategy is effective, since news topics can be quite diverse and entity overlap is less likely than
general topic/category overlap. We speci cally offer returning customers an option to hear the news
on entities for which they searched in their previous conversation, but it is not clear yet whether this
strategy is effective. We plan to study personalizing the experience for returning customers in more
depth in the coming weeks before the end of August as described in Section 8.

5.4 Travel and Attractions Component

The Travel and Attractions component supports search and recommendation for real-time place
information, through a conversation about customers' interests. Customers can either choose to talk
about their preferred locations, or rely on the component's recommendations. Once customers are
satis ed with the rst-round interaction about popular places, the component further engages with
them about their hobbies or activities, such as Hiking or Skuba Diving, and uses this information
for more personalized suggestion on locations. Once the full engagement-cycle is complete, the
component sends users through cross-component recommendation to a different topic.

Data and Implementation Notes The main data source is from Google Places API, which is

one of the largest datasets for locations-based information. We also created a handcrafted dataset
of most common locations (cities, states and nations), and this dataset is used to detect various
locations from customer utterance. Detected location is used as input to Google Places API along
with detected keyphrases, personalized info and location-related entities. For effective information
retrieval, the component uses query-expansion technique to combine keyphrases, location entities,
and any provided hobby information into a richer query. The output from Google Places APl is sent

to a domain-customized heuristic ranker, and uses the available metadata features to boost or reduce
the retrieval scores. After the response is retrieved, the component offers follow-up suggestions of
near-by or relevant places, or otherwise attempts to engage the customer in an attempt to provide
even more relevant information.

5.5 Supporting Tail information needs

Video Games: component was added because topic analysis and manual log reading revealed a
large amount of interest from customers. Asking about video games before the component's addition
usually caused unpredictable responses, often resulting in less than satisfying conversation experience.
The design of the component was to imitate a real life conversation about one of the gamers' most
popular queries: upcoming games. This component nds out about the customer's console preference
and saves it, so that if the customer comes back again later, the component will pick up where it
left off. It is able to talk about the most popular upcoming games for the most popular gaming
platforms, speci cally PlayStation, Xbox, Nintendo Switch and PC. From feedback it became clear
that customers may be interested in video game suggestions for their kids, and the component was
extended accordingly. If this work is allowed to continue, the natural next step is to include a much
more comprehensive database on video games for the next version of the component.

The 2018 FIFA World Cup: was a major sporting events during the semi- nals, and as such a
temporary component was added to address the information needs around this event. The component
used live scraping of multiple website data to compile summaries of whatever teams the customers
wanted to hear about. In addition, it attempted to answer some basic questions about the World
Cup history and other related trivia. During the tournament, we saw some interest in the World Cup
from customers, which died off completely after the World Cup was over. This showed that quickly
spinning up a component was possible in our IrisBot framework, and satis ed many customers.

Cars: this component is capable of identifying various car brands and talking about upcoming
models of different car types. Science and technology, and speci cally automotive topics, were very
popular topic that people often asked. As an initial solution, we implemented a component to support
this popular interest. We created a curated dataset of upcoming car models grouped by different

12

brands, along with model descriptions and specs. Based on this dataset, this component can answer
guestions and recommend new cars for the interested customers.

Sports and Celebrities: While we chose not to explicitly build deep domain knowledge about
sports, to support this common information need we designed a wrapper to help a customer quickly
navigate to relevant News content on the sport or player or team of interest, and create an effective
query to retrieve the most relevant News content. This component engages with the customer to ask
for their interests such as their favorite sport or team, and then queries the News for the appropriate
information, at which point the News component continues the discussion on that topic. We took a
somewhat similar approach for retrieving information about celebrities: if a customer is interested in

a particular well-known person who may or may not be currently in the News, we rst provide a short
description of that person from Wikipedia, and then suggest to the customer to search for the latest
news on that person. For most celebrities or famous people, this approach is quite effective as even
if that person is no longer in the news, their key accomplishments are often outlined in Wikipedia
entry. Same as with sports, once the customer is directed to the News, the News component is able to
continue the discussion on that person just like on any other topic by offering relevant news organized
by category and related entities.

Chat, Jokes, and Stories : By the rules of the competition, we were not allowed to propose any
jokes or stories, but were allowed to respond with jokes them, if customers speci cally requested
them. For that, we had small components, which would return a random joke/story from a curated
list. As a fallback, for when classi er failed or components couldn't nd a good enough response, we
had a general catch-all Chat component, which was based on the A.L.I.C.E. chatbot, implemented
in AIML. The original chat contained a comprehensive list of templates. We manually curated
those templates to keep only the absolutely necessary ones to be able to respond with some generic
answers for incomprehensible or long-winded utterances from customers, which we had no hope of
responding otherwise.

5.6 Question Answering and Recommendation using Social QA archives

General QA module: Open-domain conversational search requires supporting a wide variety of
information needs, including unique questions which are impossible to anticipate in advance. As
a solution, we designed a general question-answering module that uses social question answering
archives such as Quora.com to search for related questions to the customer's utterance, and suggest
possible answers provided for that question. The Bing Web search API with extensive customization
was used for this purpose. Candidate question-answer pairs are retrieved and re-ranked by the
combination of semantic similarity, grammatical completeness, sentiment, and several other heuristic
features. To maintain engagement, all highly-scored (and thus probably relevant and interesting to the
customer) QA candidates are stored for a future recommendation on the same topic. This component
was able to support obscure questions ranging from religion and philosophy to technology and house
repair topics. It also required extremely aggressive lItering to avoid responding with content that
violated the contest guidelines due to profanity or inappropriate topics.

Customized Animals Question-Answering Module

Based on our feedback analysis during semi nals period, we realized the need for a component
that can answer questions and suggest information about animals, because many people, asked
different things about various animals. Our approach was to modify the general QA module above to
speci cally customize it to this domain (Animals). To ensure the relevance of candidate QA pairs to

the customer utterance, extra ranking features were added, such as appearance of detected animal
in question, frequency of animal occurrences in responses, as well as additional semantic matching
and grammatical completeness features. Lastly, to improve the relatedness of information retrieval
process, handcrafted query-expansion templates were designed speci cally to retrieve interesting
questions about animals and to avoid offensive or shocking content to the primary audience (children):
e.g., whether a particularly cute animal is delicious.

Opinion Mining and Retrieval When IrisBot is asked for its opinion on a subject, we try to return
an overview of the general sentiment on that topic by using the opinions mined from the Reddit social
media website. For this purpose we indexed 46 million Reddit posts from February 2018 to May

13

2018, along with the respective sentiment polarities (positive, negative, neutral or mixed.). If IrisBot
is asked for an opinion on a topic, and if that opinion is not precomputed, we query the entity polarity
index for the entity that the customer is asking about, and count the number of posts that mention that
entity with positive and negative sentiments. We then return the statistics with a disclaimer that our
bot does not have an opinion on this topic yet, but is aggregating what people say on the Internet on
this topic. This feature was incorporated into the bot relatively late in the semi- nals period and as a
result was not extensively featured in our conversation logs. Our plan is to further connect opinions
to entities in the other system components to pro-actively offer opinions on movies, bands or entities
if available and deemed appropriate.

6 Personalized Topic Suggestion

As we learned during this competition, one of the key aspects of a successful conversation is topic
transitions and recommending the next topic of conversation. IrisBot initially attempted to recommend
topics randomly, which turned out to be disastrous for cohesive conversation 28}y [8]). Instead,

our next version pre-de ned reasonable topic sequences, or scripts for conversations, and suggested
topics following a prede ned sequence if a customer did not express a preference or interest in any
speci ¢ topic. However, we also learned that a small number of default topic sequences does not
work for all customers, and instead developgekasonalizedopic suggestion module, trained on

past conversations, that attempts to predict which topic a customer would be interested in discussing
next. We believe this is an important innovation as it allows our bot to tailor the topic order to each
customer based on a variety of traits and characteristics.

6.1 Personalized Sequential Topic Suggestion Model

To propose the next interesting topic for each customer, we introduce a Conditional Random Field
(CRF)-based sequence model. To make the suggestion personalized, we investigated two approaches,
outlined below. First, we introduce the CRF model for Topic suggestion, and then discuss personal-
ization later in this section.

First, every conversation is divided into different turns, then four different feature groups were
extracted from each turn. The rst group is Accepted and Reject suggestions, these feature vectors
have the value 1s for the accepted topics, -1s for the rejected topics and Os for the topics that have not
been proposed. This feature helps our model be more eager to pick the topics of values 1s and Os in
the future, and consequently more reluctant to suggest 1s rejected from similar conversation states.
The second group is the topic classi cation feature, which represent the the current conversation topic.
This feature could indicate the historical probability that a current state is a potential topic-switching
point, or whether it should be a follow-up from the previous state. The third group is a set of
contextual features, which represent previous visited states, and previous suggested topics if they had
been accepted. The fourth group is a set of high level features such as the inferred gender of users
[-1,1] (female, male), and friendly users [GIVENAME or NOT].

To evaluate our approach, we rst experimented with the topic suggestion model in simulation mode
on off-line data. To label the data, two different scenarios have been established for training and test
data. For training data, if topic X was suggested in fiyand a user starts talking about topic X in

turn i+1, then, the label of X-ACC is assigned to turn i. If the customer rejects the suggestion and
asked for something else, the label becomes X-REJ, otherwise the label is a FOLLOW-UP for one of
the components. There is a small difference between labeling of the test data compared to training
data, in which, if a customer in turn i, rejects the suggested topic and in turn i+n wants to talk about
topic X, the the label for turn i is modi ed from X-REJ to X-ACC, because it ultimately matches the
customer interest.

Personalized topic suggestion : We developed a Mixture of Experts model, in which each model
had been trained on a speci c group of customers. Two different ways to cluster customers into
different groups had been attempted. The rst one is clustering customers based on their past visiting
frequency with the bot, resulting in two groups: returning, and new customers. The second way
for clustering is based on time of day information, which is expected to correlate with customer
demographics: dividing every day into into 4 different time buckets such as, morning, afternoon,
evening and midnight, and then assign every customer to one of these time buckets.

14

	Background and Overview
	Background
	Overview

	IrisBot System Architecture and Description
	Architecture
	Dialogue Manager and Response Selection Overview
	Language Understanding and Entity Recognition pipeline
	Domain-specific Components

	Topic and Intent Classification
	Contextual Topic Classification
	Semantic and Lexical Classification using Convolutional Neural Networks (CNN)

	Intent Classification

	Dialogue Manager and Response Ranking
	Dialogue Manager: Implementation
	Response Ranking: Model and Algorithm

	Domain-Specific Components
	Movies and Shows Component
	Music Component
	News Component
	Travel and Attractions Component
	Supporting Tail information needs
	Question Answering and Recommendation using Social QA archives

	Personalized Topic Suggestion
	Personalized Sequential Topic Suggestion Model
	Cross-Component topic suggestion

	Results and Discussion
	Overall IrisBot Performance
	Topic and Intent Classifier: Intrinsic Evaluation
	Topic Suggestion Results
	News ranking and personalization
	Effects of Personalization on conversation behavior and ratings

	Conclusions and Future Work

