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Abstract

Gunrock is a social bot designed to engage users in open domain conversations.
We improved our bot iteratively using large scale user interaction data to be more
capable and human-like. Our system engaged in over 40, 000 conversations during
the semi-finals period of the 2018 Alexa Prize. We developed a context-aware
hierarchical dialog manager to handle a wide variety of user behaviors, such as
topic switching and question answering. In addition, we designed a robust three-
step natural language understanding module, which includes techniques such as
sentence segmentation and automatic speech recognition (ASR) error correction.
Furthermore, we improve the human-likeness of the system by adding prosodic
speech synthesis. As a result of our many contributions and large scale user
interactions analysis, we achieved an average score of 3.62 on a 1 — 5 Likert scale
on Oct 14th. Additionally, we achieved an average of 22.14 number of turns and a
5.22 minutes conversation duration.

1 Introduction

One considerable challenge in dialog system research is training and testing dialog systems with a
large number of users. To address this, most researchers have previously simulated users to train and
evaluate their systems through paid subjects on crowd-sourced platforms [27]. However, systems
trained and evaluated in such a manner can yield precarious results when directly deployed as a real
product. The Amazon Alexa Prize provided a platform to attract a large number of volunteer users
with real intent to interact with social conversational systems. We obtained on average more than 500
conversations per day over the course of the 45 day evaluation period. In total, we collected 487,314
conversation turns throughout the entire development period, with collection ending on Aug 14th.
Anyone who has an Alexa powered device, such as Amazon Echo, can interact with our system in the
US. Our system needed to handle a large pool of diverse users.

As humans are accustomed to the communication patterns of one another, most users would likely
transfer their human-human communicative behavioral patterns and expectations to interactions with
a system. For example, while users quickly learned that Microsoft Cortana (a personal assistant)
could not handle social content, 30% of the total user utterances addressing it consisted of social
content [10]]. Therefore, one possible way to improve conversational system performance is to imitate

*abtchen@ucdavis.edu
Tdianyu @ucdavis.edu
fwmwen @ucdavis.edu
$joyu@ucdavis.edu

2nd Proceedings of Alexa Prize (Alexa Prize 2018).



human communicative behaviors. We propose an open-domain social bot, Gunrock, to imitate natural
human-human conversations with the ability to cover a wide variety of social topics that can converse
in depth on specific and popular subjects. We made a number of contributions in the open domain
spoken language understanding, dialog management and language generation.

The two major challenges in open-domain spoken language understanding include 1) ASR errors and
2) entity ambiguity. We designed a novel three-phase natural language understanding (NLU) pipeline
to address these obstacles. While users can utter several sentences in one turn, ASR decodes the
sentence but does not provide punctuation like textual input. Our NLU first breaks down the complex
input into smaller segments to reduce the complexity of understanding. It then performs various NLP
techniques on these small segments to extract information including named entity, dialogue intent,
and sentiment. Finally, we also leverage context and phonetic information to resolve co-reference,
ASR error, and entity ambiguity.

We also designed a hierarchical stack-based dialog manager to handle different multitudes of con-
versations among users. The dialog manager first makes a high-level decision on which topic (e.g.
movies) the user requests using information obtained from NLU. Then the system activates the
domain-specific topic dialog module that handles that topic. In each topic dialog module, we have a
pre-defined conversation flow that serves to engage users in a more detailed and comprehensive con-
versation. To accommodate various user behaviors and keep conversations coherent, the system can
jump in and out of the flow to answer factual and personal questions at any time. Additionally, users’
intent switch can be accommodated by using the tunnel created between different domain-specific
topic dialog modules.

The presentation of the system utterance is equally as important as its content. To create a more lively
human-like interaction, we created a library of prosodic effects using Amazon’s speech synthesis
markup language (SSML), such as “aha”. From user interviews, we found that people evaluated the
system as sounding more natural with these prosodic effects and interjections.

2 Related Work

Task-oriented and open domain dialog systems have been widely studied. The former lies in specific
domains, such as restaurant reservation [2]] [7]. In the open domain, early chatbots such as Alice
[26] aim to pass the Turing Test while recent dialog systems such as Amazon Alexa and Google
Assistant focus on short-turn, question-answer types of interactions with users [20]. In comparison,
social chatbots require in-depth communication skills with emotional support[21]. Gunrock utilizes
state-of-the-art practices in both domains and emphasizes dynamic user conversations.

Many neural models [25]] and reinforcement learning models [14] have been proposed for understand-
ing and generation. With large datasets available, including Cornell Movie Dialogs [5] and Redditﬂ
these models improve dialog performance in an end-to-end approach. However, these methods suffer
from incoherent and generic issues[29].

To solve those problems, some research has combined rule-based and end-to-end approaches [19]].
Other relevant work leverages individual mini-skills and knowledge graphs [6]. In the 2017 Alexa
Prize El, Sounding Board reported the highest weekly average feedback rating (one to five stars,
indicating how likely the user is willing to talk to the system again) of 3.37 across all conversations[6].
This combination of approaches enhances user experience and prolongs conversations, however, they
are not flexible in adapting to new domains and cannot handle robustly opinion related requests.

Our system takes full advantage of connected datasets across different domains and tunnels to
transition seamlessly between topic dialog modules. We trained our models with those datasets in
addition to data collected from users for NLU and natural language generation (NLG). These novel
concepts contributed to our last week rating of 3.62.

3 Architecture

We leveraged the Amazon Conversational Bot Toolkit (cobot)[]
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to build the system architecture. The toolkit provides a zero-effort scaling framework, allowing
developers to focus on building a user-friendly bot. The event-driven based system is implemented
on top of AWS Lambda functiorﬂ and will be triggered when a user sends a request to the bot. Cobot
infrastructure also has a state manager interface that stores both the user data and the dialog state
information to DynamoD

We also utilized Rediﬂ and Amazon’s newly released graph database, Neptunﬂ to build the internal
system’s knowledge base.

In this section, we focus on discussing each system component.

3.1 System Overview
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Figure 1: Social Bot Framework

Figure[T]depicts the social bot dialog system framework. Amazon provides user utterance through an
ASR model through the run time and Amazon Alexa’s Text-To-Speech (TTS) to generate utterances.
Our system mainly handles the text input and output. Due to the possibility of long latency, we bypass
some modules to generate responses in some scenarios, such as low ASR confidence, profane or
incomplete user input. For example, if we detect that there is a low confidence score in ASR results,
we will generate prompts to ask the user to repeat or clarify directly.

After going through the ASR, the user input will be processed by multiple NLU components, such as
the Amazon toolkit services and dialog act detector. We will discuss them in detail in Section[3.3]

In both face-to-face and online contexts, people engage in conversations that include profane content.
We use Amazon Offensive Speech Classifier toolkit to detect offensive content. If content exhibits
signs of profanity, we inform the user on the inappropriateness of the topic and recommend an
alternate subject to continue the conversation.

Figure [T] shows that there are 12 components in NLU. In order to balance the trade-offs between
latency and dependencies, we use cobot’s built-in natural language processing pipeline with a thread
pool design. There are three steps involved in the NLU pipeline. First the input utterance is segmented
into multiple sentences and then the noun phrases are detected. Finally, the noun phrases are further
analyzed by several NLP components as shown in Figure[I] In Section[333] we discuss the NLU
components in detail.

In the Dialog Manager, Intent Classifier is used to direct different user intents to corresponding
topic dialog modules. They cover several specific topics, including movies, sports, animals, etc.
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Each topic dialog module has its own dialog flow, allowing users to have the flexibility to have
deeper conversations. All the topic dialog modules use Amazon’s EVI services to respond to factual
questions and back-story to answer questions associated with Bot’s persona, such as What is your
Jfavorite color? In addition, we use Amazon EC2 instanceﬂ to scrape data from different sources
and store them in our knowledge base. All the information from NLU along with context information
is used to determine the appropriate topic dialog module, which calls the NLG to generate a response.

The NLG system uses a template manager to centralize our system’s response templates. To ensure
the appropriateness of the response, we include a profanity checker to distill the content of the
response. A post processor is also included in NLG to modify the original topic dialog module
response. Finally, we use Amazon SSML to format the prosody of the response.

In the following subsections, we describe the major system blocks in detail.

3.2 Automatic Speech Recognition

Before user utterances pass through the NLU, our system prepossesses the input utterance based on
the ASR overall confidence score and each word’s confidence score in order to address and handle
ASR errors. We define three ASR error responses based on the confidence score range:

e Critical Range: If the overall confidence score and each word confidence score are below
0.1, the system directly interrupts the overall pipeline and asks users to repeat or rephrase
their utterance or request.

e Warning Range: If the overall confidence score is lower than 0.4 but is not in a Critical
Range, it is allowed to pass through to ASR correction, which is discussed in Section [3.3.5]

o Safe Range: For other cases, we define it as a safe range and directly use the ASR result.

We also handle unexpected intents from users, for example, complaints or incomplete utterances. In
this case, we realize that simply providing information in response can lead to a poor user experience.
Therefore, our pre-processor in the ASR process can detect the anomalous behavior and respond to
users for clarification.

3.3 Nature Language Understanding

Alexa Skills Kit (ASK) [12] provides opic classification, sentiment analysis, profanity check and
NER detection for NLU. We add a sentence segmentation model to separate input from users
into semantic units and perform NLU on each semantic unit. After extracting noun phrases, we
implemented (named) entity recognition, co-reference, ASR correction, and dialog act detection to
support language understanding. We present the technical details of each model in the order of the
NLU pipeline (Section [3.1).

3.3.1 Sentence Segmentation

To make the conversation more interesting, we ask more open-domain questions without restricting
to any dialog flow. This type of question encourages the users to talk more, thereby making the user’s
request sentence longer and more complex to handle. Therefore, we trained a segmentation model to
break the utterances into smaller segments with complete semantic meaning. We trained a sequence
to sequence model [24] using the Cornell Movie-Quotes Corpus [5] which contains

304, 713 turns of dialog and 23, 760 manually labeled utterances (29 July - 31 July) as a validation
set. The data was pre-processed by adding a special token for a break in the sentence. The model was
pre-trained with 300-dimension word embedding from fastText [[16] on Common Craw (2 million
word vectors). It uses a 2-layer bidirectional LSTM as the encoder and a 2-layer RNN decoder
with input feed and global attention. In case the pre-trained embedding generates similar words, we
enforce the output to have the same words as the input except for the special breaking tokens.

This model converged in 30 epochs and reached an accuracy of 95.95% by evaluating 220 randomly
chosen unique utterances, outperforming a pre-trained language model. For example, “Alexa that
is cool what do you think of the Avengers” is segmented into “Alexa <BRK> that is cool <BRK>
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what do you think of the Avengers <BRK>". Furthermore, in order to efficiently detect breaks in
the sentence, we label user data and annotate the user utterance transcript with ASR model result to
make use of the relative break time between each word. Specifically, we maximize the probability

p(l’i|(£1..$i,1, tl/f)

, wWhere x; is the next word or a break signal in the same order as the input, ¢; is the time lapse
between x; and x;_; collected by ASR, and ¢ is the average time lapse between two separate words.
The major problems with segmentation errors are named entity recognition (NER) and incomplete
input sentences. We plan to solve these problems and consider more context in future work.

3.3.2 Noun Phrase Extraction

We used the Stanford CoreNLP constituency parser [15] to extract noun phrases and local noun
phrases (the leaf level of the parse tree) from the input sentence. We filtered some stopwords (e.g. it,
all) and considered the rest as the keywords for other NLU modules and selecting strategy.

For future work, we plan to use a dependency parser to identify the subject and object in case there
are multiple noun phrases.

3.3.3 Entity Recognition

NER tools such as Stanford CoreNLP [15] and spaCy [9]] heavily rely on the letter case of the words
in the sentence (e.g. capital letters), which is not available to us. In addition, these tools cannot
recognize general entities nor provide an accurate and detailed label to an entity. To provide more
information to selecting strategy and different modules, we have three recognizers running in parallel
with the extracted noun phrases.

e Google Knowledge Graph E} We query noun phrases with Google knowledge graph to
generate a detailed description, confidence score and cache the result to Redis. We also
map the description to a module we have. For example, the noun phrase “tomb raider” has
the label “video game series” with a high confidence score so we can map it to our game
module. In addition, we extract multiple labels to disambiguate noun phrases (ex. “tomb
raider” can also be a movie). Therefore, context is considered when there are several labels
with a high confidence score.

e Microsoft Concept Graph[ﬁ We also use the Microsoft Concept Graph to categorize the
noun phrases. Compared to Google Knowledge Graph, it provides a more general category
that is useful for assigning modules.

e ASR Correction: Apart from using knowledge graphs to obtain entities, we also use an
ASR corrector which is explained in more detail in Section[3.3.3] This is very important for
homophone words (words that sound the same but have different spelling). For instance,
the user input “mama mia” from ASR is more likely referring to “Mamma Mia,” the movie.
Fuzzy search will more likely hit a phrase with a similar spelling, but may not result in the
correct option due to the speech recognition. Using phonetics to find a match increases the
accuracy of NER in specific domains.

In addition, we take context into consideration for entity recognition. For example, we can detect "her"
as a movie in Table[I] because of the movie related question that the system proposed. As described
in Section [3.4.1] information received from these methods is combined for intent classification.

3.3.4 Coreference Resolution

The state-of-the-art models by Stanford CoreNLP and NeuralCoref [ are trained on non-
conversational data and do not work well for dialog conversations in anaphora resolution. By
analyzing the data gathered (2 July - 9 July), we labeled words such as “more” and “one” to undergo
coreference. We replace such words by considering both the user utterance and the system response.
Specifically, we store noun phrases from the request and the NERs with the detailed description from
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the system response into user attributes. Depending on what the user refers to (ex. person or event,
male or female), we provide the corresponding coreference solution. Depending on the request, we
give priorities to noun phrases from the user and NER from our response respectively.

For future work, we plan to consider more context and train a model that acknowledges beyond our
selected word list with better-defined priorities.

3.3.5 ASR Correction

ASR error has a huge impact on NLU quality. ASK provides an overall ASR confidence score by
incorporating both the confidence score for each word and the score generated by a language model.
The overall score indicates how likely the whole utterance is recognized correctly. However, there are
two types of false positives that may trigger error handling signaling ASR errors when the confidence
score is low. The first one is when the word mentioned is not frequently seen in the training data, so
the word receives a low weight. Another instance of a false positive is with homophone words that
the ASR cannot capture even if the user repeats their request.

We used the double metaphone algorithm [18]] to compare the noun phrases (ignoring the most
frequent stopwords) mentioned by the user and a knowledge base. The knowledge base includes
both the context and the domain (e.g. sports genres, movies titles and game names). We stored the
primary and the secondary code of the double metaphone for each word as a key with the word as the
value. We also added a tertiary code to words with certain patterns based on observations (e.g.. the
word “jalapeno” will have a tertiary code “HLPN” in addition to “JLPN” and “ALPN”). If the overall
confidence from ASR is below a threshold (set to 0.4), we propose a candidate by matching the
metaphone code of the noun phrases to that of the knowledge base. For example, we propose the topic
“obscure holidays” and in the next turn we receive the ASR input from the user requests, “let’s talk
about secure holiday”. The primary code for “secure holiday” is “SKRLT” and the primary code for
“obscure holidays” is “APSKRLTS”. Since it is very likely that the ASR does not detect the beginning
or the ending of a phrase, we know that this might be a map with relatively high confidence. Another
example is “let’s talk about the sport high ally” received from ASR. Because we know the context of
sports, we map the code of “high ally” to the code of “jai alai” in the knowledge base (sports list).

3.3.6 Dialog Act Prediction

Each segmented sentence from NLU is associated with a dialog act. The dialog act is the function in
the dialog given the context of the conversation i.e opinion, statement. We trained an LSTM and a
CNN model to predict the dialog act. The former uses a 2-layer bi-LSTM model pre-trained with
fastText with an embedding size of 300 and a hidden size of 500. The latter uses a 2-layer CNN
model also pre-trained with fastText on a kernel width of 3. Without enough annotations from the
dialog logs, we turned to the Switchboard Dialog Act Corpus (SWDA)[23]. The SWDA dataset
collects 205,000 utterances of telephone conversations in open domain and has 60 dialog act tags.
To accommodate our use case where the utterance is by turn, we carefully pre-processed the data to
156,809 utterances and reduced the number of dialog act labels to 40. The most frequent ones are
statement-non-opinion, statement-opinion, and yes-no-questions. The two models are trained and
evaluated on this dataset.

The LSTM model achieves an accuracy of 85.60% on the validation set while the CNN model
achieves an accuracy of 85.25%. The target dimension is reduced from 40 to 19 easily interpretable
labels (see Appendix@) with a confidence score. For instance, the utterance, “awesome i like books
why do you think the great gatsby is a great novel” is segmented [3.3.1|and the dialog acts are labeled
as “awesome [appreciation] | i like books [opinion] | why do you think the great gatsby is a great
novel [open question]”. The LSTM outperformed the CNN model with an accuracy of 83.77% on
our validation set consisting of 143 randomly chosen unique utterances. We anticipate the majority
error to be correlated with statement/opinion ambiguity (I like the movie Avengers’) and incomplete
sentences.

The dialog act is dependent on contextual information and optimal results are achieved by maximizing
the conditional probability from the previous and current dialog segmentation units. We optimize our
models with pretrained embeddings ELMo][[17] and a recurrent convolutional neural network model
[13]. We are still evaluating these results. We also plan to do multi-task learning on both sentence
segmentation and dialog act prediction. Furthermore, we will combine the dialog act prediction



model and a language model to detect if the utterance is uninterpretable and if the response interrupts
the user.

3.3.7 Topic Expansion

We use ConceptNet[22] as a knowledge graph for entity expansion on the extracted noun phrases.
We frequently received feedback during the early implementation stage that the system would switch
topics abruptly. Apart from asking the users to share more and store the information in our database
as a learning process, we can talk about similar topics. For example, if a user wants to talk about
cars, we can retrieve from ConceptNet a list of different car types (such as a Volvo). So after asking
the type of car the user likes and giving comments on the input categorized by the dialog act (e.g.
if the user is telling a story, an opinion or asking a question), we can expand to Volvo and extract
information from our knowledge base.

3.4 Dialog Management

We created a two-level hierarchical dialog manager to handle users’ conversations. The high-level
system would select the best topic dialog module for each user request leveraging the output from
NLU. After that, the low-level system would activate this topic dialog module to generate a response.

3.4.1 High-Level System Dialog Management

The system first identifies user intent based on NLU output and then combined with each sub-modules’
feedback, the high-level dialog manager decides which sub-module should handle the user utterance.

Intent Classifier: We defined three levels of user intents based on the Common Alexa Prize Chats
dataset (CAPC), which is an anonymous human-bot conversations dataset collected in 2017 Alexa
Prize Competition.

LIRS

We first handle social chat domain system requests, such as “play music”, “set the temperature”,
“turn on the lights”, etc. For these requests, as our social bot cannot execute tasks, our system would
explain to the user how to exit social mode so they can then use Alexa built-in functions.

Next, we detect topic intents from user utterances. We combine regular expression, Google Knowl-
edge Graph, Microsoft Concept Graph, and Amazon Alexa Prize Topic Classifier to detect topics. We
assign the highest priority to regular expression since it can be easily adjusted to mistakenly-detected
utterances found later. Then we recognize topics from Google Knowledge Graph, Microsoft Concept
Graph, and Amazon Alexa Prize Topic Classifier sequentially. We also tune the confidence thresholds
of these three detectors based on the heuristic and dialog data we collected. If we detect multiple
topics from one utterance, and one of them is the same as the last selected topic, we prefer to select
this topic at first. Otherwise, we would pick the topic with the highest priority.

The last level is called lexical intents. We use the regular expression to analyze user requests, such
as whether the user is asking about the preference or opinion of our social bot. We designed lexical
intents for our topic dialog modules in Section [3.4.2]to choose different strategies.

Dialog Module Selector: Our dialog module selector first picks a topic dialog module responsible
for the topic intent detected by our intent classifier. In order to keep the consistency of our responses,
the selected module would provide a signal called “propose_continue” to the system after they
generate a response. If it is set as “CONTINUE”, we would select this module for the user’s next
utterance. If it is set as “UNCLEAR”, we would select this module only when we cannot detect any
other topics. When it is set as “STOP”, which means it cannot handle the user’s further requests, our
system would not select this module for the next turn. In this case, the module should propose a
module that may better handle the request. Otherwise, our system would get a special template that
propose one topic dialog module that has not been proposed or talk about, and concatenate it to the
module’s response. The priority of the modules to be proposed are tuned based on their everyday
performance. Our selector would select the proposed module once the user adopts our proposal in the
next turn.

Our dialog module selector would deal with some explicit strong user intents specifically. We design
some regular expression patterns to catch utterances with such intents and send them to the module



responsible for the current topic. For example, if the utterance is “let’s talk about movies”, the dialog
module selector would select the movie module immediately.

34.2 Low Level Dialog Management

Fact and Back-story Delivery: We built two APIs, which are Backstory and EVI to answer general
facts and background questions about our chatbot.

Backstory: A service designed to retrieve responses for questions related to our chatbot’s
background and preferences, such as “what’s your favorite sport”. We use Google’s Universal
Sentence Encoder [4] to embed both users’ questions and our pre-defined questions. Then
we retrieve the answer corresponding to the question which has the closest cosine distance
to the user’s question as a response. For each question, the Backstory module also handles
users’ further requests, such as “why do you like basketball?”.

EVI: A service provided by Amazon. It can answer factual questions such as "how old is
Lebron James?". EVI will return "I don’t have opinion on that" or "I don’t know about that"
if it does not have a corresponding answer. Also, since it sometimes returns Alexa skills link
directly, we post-process the result instead of returning directly.

Topic Dialog Modules: Each topic dialog module has its own dialog flow design. Here we listed the
topics the system covers:

Animal: The animal module is designed to have a conversation about animals. A combi-
nation of responses retrieved using the Reddit API and hard-coded information is used to
generate trivia of a variety of animals. Since the topic may be of interest to younger users,
the responses pass through a stricter profanity filter. The module can also engage the user in
a casual chat about their pets, favorite animals, etc.

Movie and Book: Both modules share a similar design. They are capable of detecting a
wide selection of movies or books using TMDB API"|and Goodreads AP respectively.
They can also talk about facts for a specific movie or book using trivia retrieved from IMDB
and Reddit todayilearned subreddit respectively. Finally, they can engage in chit chat
about opinions and experiences using predefined responses.

Music: The music module is designed to engage the users with conversations associated
with music. We have curated relevant content based on artists present in Spotify’s million
Playlist datase and also IMD

Sport: The sport module is designed to have a conversation with users about sports. Mean-
while, it builds a hierarchical conversational experience. With this design, we can easily
interleave between talking about a type of sport or discussing in-depth about a certain
sport’s related entity based on user’s interest. We also leverage the data from Reddit, Twitter
Moments, and News API to provide users with interesting and up-to-date content about
trending events on different types of sports and popular sport entities, such as basketball
stars.

Game: The game module covers popular video games. It can discuss fun facts and trivia of
different video games with users, or ask gaming related questions. Most facts are manually
selected from crawled online content to ensure response quality. Part of our knowledge
grounding for games, such as game names, genre, publisher and available platform, are
crawled from the IGDB website E} We can assume that based based on the demographic
of our users, video games is one of the popular topics in conversations, especially among
younger users.

Psychology and Philosophy: We crawled the meta information and transcripts of over
2,800 videos from TED Talks @ We picked two of them to design a conversation with
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users. During the conversation, we would ask questions and tell stories in multiple turns on
content about the meaning of life and happiness.

e Holiday: Holiday module aims to engage with users by providing updated, relevant and
interesting content about cultural holidays every day. We leverage the data scraped from the
National Today website E] which keeps track of fun holidays and special moments on the
cultural calendar. Interestingly, we found users had great interests in talking about cultural
holidays as a conversation starter.

e Travel: The travel module basically handles the dialogue flow for travel related user requests.
The module would converse with users on travel related information, such as whether users
like to travel alone or not. The module can also give travel destination recommendations.

e Technology and Science: The focus of the TechScience module is to provide users with
facts on different fields of science and technology, such as Al. The primary source of content
for this module is Reddit, for each individual subjects, we extracted information using the
corresponding subreddits. The content aims to target the general audience , including people
without any prior knowledge on the subject. Therefore the module provides a lighter take on
scientific subjects.

e News: Users are directed relevant news from various subreddits and Twitter. Gunrock
provides uplifting news when no preference is specified by the user. Users can specify topics
such as wildfires or celebrity gossip. To make the news conversation more engaging, we
elicit user opinions and provide relevant Twitter moment responses.

e Retrieval: The retrieval module serves as a backup to handle information that cannot be
assigned to any other module. Because of the diversity of the context, it has a flexible
dialog flow through asking open-ended questions, such as “What’s your opinion on this?".
Depending on the detected dialog act, it first retrieves keywords (noun phrases) from Reddit
in different subreddits. After carefully processing the retrieved data, it then returns titles
and comments of a post to the user. Retrieval also leverages ConceptNet to propose related
topics as illustrated in[3.3.7]to direct the user to continue the conversation.

Overall, the dialog flow modules follow the dialog flow design discussed in Section[d] Besides, each
topic dialog module queries our knowledge base to handle the relationships between different name
entities and events. Section [3.5|describes in details how we built our own knowledge base.

3.5 Knowledge Base

Our knowledge base consists of unified datasets stored in DynamoDB tables by topics. The datasets
come from Reddit, Twitter moments, Debate opinions, IMDB, Spotify etc. The datasets are unified
in a knowledge graph by detecting matching entities i.e. Donald Trump or wildfires. We leveraged
Amazon’s graph database Neptun to build relationships between entities and the Gremlin query
languagg™|to traverse them.

e Factual Content

— Reddit: We compose a large collection of events daily from various subreddits.
Subreddits crawled include: Science, Technology, Politics, UpliftingNews,
News, WorldNews, BusinessNews, FinanceNews, Sports, entertainment,
FashionNews, Health, MusicNews, TIL, ShowerThoughts, Travel.

— Twitter Moments: Twitter moments in Gunrock are intended to help users keep up
with what the world is talking about in real time. Gunrock is capable of speaking about
movies, books, politics, music, celebrities, and more as events happen.

— General Information: For general information on movies and music, we use IMDB
database dumps and Spotify’s One Million Playlist dataset. Spotify’s dataset gives
Gunrock the ability to transition to relevant artists within the playlist, and to understand
popular songs and artists. We also leverage TMDB API and Goodreads API for
detecting movie and book titles respectively. For API and large datasets, Redis and

“"ttps://nationaltoday.com/
Zhttps://aws.amazon.com/neptune/
Zhttps://tinkerpop.apache.org/gremlin.html
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DynamoDB are used to cache results to prevent outrun of the API limit and reduce
response latency. Redis is particularly useful for tasks such as retrieving a list of Reddit
tags a particular module can propose, i.e., aerospace engineering.

e Opinionated Content

— Twitter Opinions We accompany the Twitter Moment with mined opinions. Gunrock
has an opportunity to chime in on real time events making the conversation more
engaging and interesting.

— Debate Opinions Gunrock attempts to match statements and opinions with over
71,000 topics and 460, 000 opinions using a universal sentence encoder [4]. When the
debate topic recognition confidence level is high, and with general opinion consensus,
Gunrock will answer the topic or user opinion directly. For controversial topics where
the split of opinions is between 40 — 60 split, we request the user’s opinion and explain
that Gunrock is still forming its own opinion. This provides an opportunity to tread
lightly on polarizing issues, while accumulating a general consensus across users. We
will be performing A/B testing on this in select modules shortly.

We used OpenlE [1]] to unify our knowledge graph. It can automatically extract binary relations
between source and target entities from plain text. These relations are abstracted in the graph database
and all events between entities are stored in DynamoDB. Each event is assigned a sentiment score
using VADER sentiment [§8]] which is ideal for processing tweets and Reddit posts. This sentiment
score is used as a traversal weight for the knowledge graph.

3.6 Natural Language Generation (NLG)

Our system’s natural language generation module is template-based. It selects a manually designed
template and fills out specific slots with information retrieved from the knowledge base by the dialog
manager. The template manager module avoids response repetition and generates utterances with
a variety of surface forms. We also use Amazon Speech Synthesis Markup Language (SSML) to
provide our generated responses with prosodic variations.

3.6.1 Template Manager

The template manager module stores and parses response templates used by the system. It centralizes
all response templates from our system’s several parallel dialog flow components (e.g. movie and
music), ensures no duplicate templates are chosen for a response and allows dynamic template
formation as specified by the modules.

One of the main goals in using a template manager is to avoid duplicate responses. We design multiple
surface forms for each template, and the template manager ensures they are picked at random and
not repeated in the conversation. This is done by storing the used templates as a hash in a hash table
for each user. The hashing is done using MDS5 to reduce latency and is a widely adopted standard
hashing algorithm. By varying the responses, our system can sound more natural and human-like,
and avoid situations where the system has only one response to the user’s request.

The template manager also allows dynamic template formation by providing named slots for sub-
stitution by the modules. For instance, our movie module provides movie fun facts, and this is
done by filling in the facts, pulled from the module’s database, into our pre-defined response tem-
plates. Another instance is with our weather module. We have pre-written templates for providing
temperature information, and the temperature is filled in after the module passes on specific data
(i.e.location or date). The template manager also allows our templates to swap out simple segments,
such as acknowledgement phrases, within the templates using specific slots. This dynamic template
formatting ensures variation in our responses, and lowers the amount of templates we need to write
for the modules.

3.6.2 Prosody Synthesis

Our system utilizes Amazon Alexa’s speech synthesis system for speech synthesis. We use Amazon
SSML format to enhance our templates, such as when reading out phone numbers or correctly
pronouncing homographs and acronyms. In addition, we add fillers such as “whoops”, and “uh-oh”,
with markup such as “<say-as interpret-as="interjection">0Okey dokey</say-as>” to
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make our responses more human-like. We also insert pauses to break down long sentences to make
them sound more natural and add them before joke punchlines to build user anticipation. Please refer
to Amazon’s official Speechcon Reference for audio examples.

4 An Example Dialog

1 SYS:  Oscar Wilde once said: life imitates art [fact]. Through watching movies, I feel like I've
experienced being human [experience]. I'm so glad to talk to you about films. What’s the
name of your favorite movie?

2 USR: her

3 SYS:  Ah, I’'ve heard of Her [acknowledgement]! Here is something I just learned. Director
Spike Jonze so loved his role as Alien Child that he would often give notes to his editor and
producer in character [fact]. Any thoughts?

4  USR: that’s cute

5 SYS: Maybe you will find this interesting. This is the only movie Spike Jonze has written as well
as directed, completely from his own original script [fact]. Can you believe that?

6  USR: yeah spike jonze is a great director who’s your favorite director

7 SYS:  Ava DuVernay. I loved her film 13" and Selma and 1 think she’s very talented [opinion].

8 USR: cool

9 SYS: Who’s your favorite actor or actress?

10 USR: tom hanks

11 SYS: Mm hm, I can see why you would say Tom Hanks. Good choice [acknowledgement].

But my favorite actor is Leonardo DiCaprio. He consistently gives a great performance
[opinion]. What do you think is the best acting performance of all time?

12 USR: let’s talk about something else

13 SYS: Ooh, I've been meaning to tell you! I really like sports, but am unable to physically play
[experience]! Do you play any sports?

Table 1: An example conversation with Gunrock.

Table[T|presents a simulated example conversation. To engage the user, our system interleaves facts,
experiences, and opinions centered on interesting content. Facts present the user with amusing
information. In addition, the user can exchange opinions and experiences with our bot. We believe
having opinions and experiences is crucial for humanizing the bot.

We also found acknowledgment to be important for user engagement. A dialog can be considered a
process of information interchange, which only takes place when the speaker and listener understand
each other. Acknowledgment signals to the user that the bot understands and also acts as implicit
grounding where it’s easy for the user to detect that the bot has misunderstood.

To prolong the conversation, we design the system to have mixed initiatives. If the user is requesting
a specific topic or asking a question, we make sure to respond appropriately. If the user is interested
in the current topic, the system will continue to delve into more detail. At the same time, our system
can also take the initiative. If the user does not have a clear intent or actionable request, then our
system will propose a topic or ask a relevant question.

5 Results and Analysis

Figure [2] shows the overall trend of our chatbot’s daily and last 7-day average ratings during the
semi-finals. Our chatbot’s last week performance improved by around 17% and reached 3.56 on
average. Our most recent day’s average is 3.63. We also achieved 28% and 30% improvement
in terms of median conversation duration (from 1:33 min to 2:00 min) and 90% percentile of
conversation duration (from 5:58 min to 7:44 min) respectively during the semi-finals. The tremendous
improvement in both ratings and duration is a reflection of all the innovative changes that we made to
our system.

**https://developer.amazon.com/docs/custom-skills/speechcon-reference-interjections-english-us.
html
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Figure 2: Daily and last 7-Day average user ratings over time

We believe there are three main reasons that led to the significant improvements of our performance
during the semi-finals. Our innovative three-phase NLU pipeline, the hierarchical topic transition
management, and the enhanced response with prosody synthesis have significant impact on our
performance at the systematic level. At the topic dialog module level, we optimize them every day
with our dialog data and visualization tool. This daily optimization steadily improves our conversation
quality. Resolving technical issues such as latency also improves our user experience significantly. As

shown in Figure 3] all these improvements lead to longer conversations with significantly improved
error rate of 8.32% (reported as of 8/10).

metric mean_turn median_turn p90_turn

- N N
Q e a

Number of Turns
o

S RS %Q'\ %\@
N O
D D S S
Date

Figure 3: Daily number of user turns over time

To further understand the system improvement over time, we performed analysis on three aspects:
module performance, dialog strategy effectiveness, and latency.

5.1 Module Performance Analysis

We use the average rating per turn to evaluate the performance of each domain-specific module,
where we assume each turn contributes equally to the rating of a complete dialogue. We chose this

criteria over the average rating per dialog since each module’s impact on the rating should correlate
with the number of turns it hits.

5.1.1 Topic level analysis
Table[2]demonstrates the number of turns and average ratings based on different topic dialog modules.

MOVIE is the most popular topic during the competition; ANIMAL is the highest rated topic. Figure[d]
shows the improvement of the 9 topic level modules over time. Two of the modules, MOVIE, and
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topic num_turns  avg_rating  17d_num_turns  17d_avg_rating

MOVIE 56,568 3.84 20,399 3.89
BOOK 24,292 3.75 7,451 3.83
ANIMAL 17,622 3.90 9,037 3.97
SPORT 12,788 3.65 2,675 3.95
HOLIDAY 10,445 3.56 2,673 3.85
GAME 9,391 3.57 2,337 3.79
MUSIC 9,183 3.63 3,207 3.62
NEWS 5,042 3.12 711 3.47
TECH & SCIENCE 4,396 3.50 1,518 3.79
PSYCHOLOGY & PHILOSOPHY 1,529 3.47 897 3.36
TRAVEL 657 3.61 217 4.08
CONTROVERSIALOPION 554 3.14 275 3.28

Table 2: Overall performance of each topic dialog module in order of popolarity

— Last 7-day Rating -—- Daily Rating
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Figure 4: Daily average ratings and last 7-day average ratings for nine topics over time

BOOK consistently have high ratings over time (above 3.8). Furthermore, all the topic modules have
improved significantly, especially in terms of the last 7 days average rating.

5.1.2 Lexical analysis

We also applied unsupervised learning and text mining to understand what entities people like to talk
about. Figure 6 shows a qualitative study we did earlier in our development cycle to understand the
correlation between the ratings and the entities discussed using the scattertext[11]] tool. The x-axis
represents the word frequency and the y-axis measures the association between the word and the
rating. We found that a large group of users were interested in talking about technology, games,
and animals, but have given a low rating. This is reflected by the plot of characteristic words such
as “robots”, “undertake” and “dog”. This is why we spent time and emphasis on improving and
enhancing these modules. We also found a correlation with low ratings and controversial topics such
as “religion”, “gossip” and “poop”. This is why we tuned our bot to avoid and divert away from these
topics. Furthermore, we found a correlation between trending topics and higher ratings. This implies
users are interested in talking about current events. This inspired us to create a “today’s holiday”
module and “flash news” using Twitter moments. In the end, we leveraged this large-scale user data
as one of the bases for our development decisions and research directions.
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Figure 5: Text mining for correlation between ratings and topic words

5.2 Dialog Strategy Effectiveness

We chose to prioritize feature updates and bug fixing in our agile development as we can improve our
chatbot with a much higher turnover rate. This, however, limited our means of conducting randomized
controlled experiments on the changes we made. We used the R package “Causallmpact”[3] by
Google to analyze the impact of our changes to the user experience and rating metrics over our
development cycle. This package allows us to estimate the effect of a change in our system even
when other testing methods are incompatible with our feature release cycle. It is worth mentioning
that we also do pilot testings for any new features we implemented, and we push these features one
module at a time. This means our change in ratings will be correlated with our feature updates.

5.2.1 Acknowledgement with Knowledge Graph reasoning

Grounding has shown to be an effective dialog strategy for non-task oriented dialog systems[28]].
Furthermore, acknowledging a user’s intent or preference is more meaningful because it requires
the chatbot to have knowledge acquisition and reasoning. It is also challenging because it relies on
having a reliable NLU and knowledge graph to create a smooth and engaging conversation. As we
have a better system structure to acquire and organize the knowledge, we experimented on adding
acknowledgement into different modules while leveraging knowledge graphs. For example, in the
book module, when the user responds that the user prefers fiction over non-fiction books, our bot will
acknowledge that by saying, "Great, I remember reading Harry Potter and the Sorcerer’s Stone from
the Harry Potter series.”

Acknowledgement

Last 7 days Rolling Average Rating

Jul 30 Aug 06
Date

Aug 13

Figure 6: Acknowledgement Effect on the Book module from 7/26 to 8/14
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Figure[6]shows the time series of the smoothed 7-days rolling average rating on the book module with
the intervention on 7/31 when the acknowledgement is added. During the post-intervention period,
the daily rating had an average value of approx. 3.90. By contrast, in the absence of such intervention,
we would have expected an average response of 3.50. The 95% interval of this counter-factual
prediction is [3.19, 3.82]. Subtracting this prediction from the observed response yields an estimate
of the causal effect the intervention had on the daily rating. This effect is 0.40 with a 95% interval
of [0.078,0.71]. In relative terms, the daily rating showed an increase of +11%. The 95% interval
of this percentage is [+2%, +20%)]. The probability of obtaining this effect by chance is very small
(Bayesian one-sided tail-area probability p = 0.008). This means the causal effect can be considered
statistically significant.

5.3 System Latency
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Figure 7: Distributions of ratings after latency improvement on 7/29
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Engineering plays an important role in building a product that ensures a great user experience. Our
team maintains a high uptime of 94%.

We found that reducing system latency when responding to users brings huge rating improvements.
To avoid release regression effect, we monitor the system latency whenever a new feature is added.
Before 7/29, we had a significant latency issue caused by a bug passing large user attributes to the
NLP module in Cobot. We resolved the bug by increasing the memory and CPU capacity of the AWS
Lambda function. We also performed an analysis to explore whether reducing the latency yields
rating improvements.

Figure [7] shows the distributions of ratings from two periods 7/27-7/28 and 7/29-7/30 (improved
latency). Because the ratings are not normally distributed, we use Wilcoxon rank sum test to check
whether the median ratings from 7/29 are overall higher than the median ratings from 7/28. Since
the p-value is 0.0006, there is a statistically significant difference. Therefore, we can conclude that
improving latency brings an improvement in user rating.

6 Visualization Tool

We built an automatic dashboard on top of AthenaEI and Quicksightm to monitor, analyze, and
improve the dialog system performance. We track and visualize data regarding the performance and
trends of different components in our system. Figure[§]shows an example of our topic breakdown
dashboard. Based on the dashboard results, we prioritize proposing highly-rated dialog modules.
We also improve dialog modules with low ratings in the meantime. Figure[9]demonstrates another
view of our dashboard. Hourly-aggregated ratings are shown on the top graph while daily-aggregated
ratings are shown on the bottom. This allows us to track trends at different time scales. Such statistics
will be useful for A / B testing experiments in the future.

Bhttp://aws.amazon.com/athena
*https://aws.amazon.com/quicksight
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Figure 8: Topic Breakdown Metrics
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Figure 9: Rating Metrics

7 Conclusion

We designed an open-domain social conversation system that achieved an average rating of 3.56
out of 5 in the last seven days of the semi-finals. We made many contributions in spoken language
detection, dialog management, and prosodies speech synthesis. Specifically, we proposed a three-
phase spoken language understanding pipeline to handle open domain spoken language understanding;
a hierarchical dialog manager that utilizes dialog context to enable flexible dialog flow that interleaves
facts and opinions seamlessly; and a prosodic speech synthesizer that constructs more natural
responses through tone adjustments and filler interjections.
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8 Future Work

Due to the intensity and time limit of the competition, we were not able to perform rigorous
experimental analysis on the innovative features of GUNROCK including but not limited to dialogue
act classification, ASR correction, and application of prosody. We will conduct the A/B testing
right after the end of the semi-finals. There are several areas that we would want to improve our
system on. We aim to improve the selection of proposed topics for different users based on their
profile information, such as gender, personality, and topic interests, to create an adaptive and unique
conversation experience for each user. To further enhance the unique conversation experience for
each user, we will build a robust recommendation system to provide suggestions on upcoming events
or interesting content with respect to different user’s interests.

We also plan to use reinforcement learning to train a better dialog policy for sub-module selection and
conversation content planning. We expect to interleave social chitchat and task-oriented conversation
to handle the cases better when users request help with a specific objective, such as recommending
an appropriate restaurant or tourist attractions. We will also build a data-driven opinion answering
and topic debate subsystem, which will enable us to provide proper subjective discussion with users
on popular topics. Finally, we will also explore online learning techniques to make our system
automatically learn from the dialog data with users, especially on the topics the system is not familiar
with.
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A Appendix

This table demonstrates the Gunrock dialog act tags with definitions and examples. These dialog acts

assist dialog topic modules to understand user utterance.

Dialog Act

Dialog Act Tag Description Example
statement fact or story like utterances I have a dog named Max
acknowledgement acknowledgement to the previous ut- | Uh-huh

terance
opinion opinion towards some entities Dogs are adorable
appreciation appreciation towards the previous ut- | That’s cool

terance
abandoned not a complete sentence So uh
yes_no_question yes or no questions Do you like pizza
pos_answer positive answers yes

opening

opening of a conversation

Hello my name is Tom

closing

closing of a conversation

Nice talking to you

open_question

general question

What’s your favorite book

neg_answer

negative response to a previous ques-
tion

I don’t think so

other_answers

answers that are neither positive or
negative

I don’t know

other utterances that cannot be assigned | I’'m okay

other tags
commands command to do something Let’s talk about sports
hold a pause before saying something Let me see
not_understanding cannot understand I can’t hear you
apology apology I’'m sorry
thanking express thankfulness thank you

respond_to_apologize

response to apologies

That’s all right
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